Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano5set Unicode version

Theorem peano5set 14662
Description: Version of peano5 4597 when  om  i^i  A is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
peano5set  |-  ( ( om  i^i  A )  e.  V  ->  (
( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem peano5set
StepHypRef Expression
1 bj-omind 14656 . . . . 5  |- Ind  om
2 bj-indind 14654 . . . . 5  |-  ( (Ind 
om  /\  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )  -> Ind  ( om  i^i  A ) )
31, 2mpan 424 . . . 4  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  -> Ind  ( om  i^i  A ) )
4 bj-omssind 14657 . . . . 5  |-  ( ( om  i^i  A )  e.  V  ->  (Ind  ( om  i^i  A )  ->  om  C_  ( om 
i^i  A ) ) )
54imp 124 . . . 4  |-  ( ( ( om  i^i  A
)  e.  V  /\ Ind  ( om  i^i  A ) )  ->  om  C_  ( om  i^i  A ) )
63, 5sylan2 286 . . 3  |-  ( ( ( om  i^i  A
)  e.  V  /\  ( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) ) )  ->  om  C_  ( om  i^i  A ) )
7 inss2 3356 . . 3  |-  ( om 
i^i  A )  C_  A
86, 7sstrdi 3167 . 2  |-  ( ( ( om  i^i  A
)  e.  V  /\  ( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) ) )  ->  om  C_  A
)
98ex 115 1  |-  ( ( om  i^i  A )  e.  V  ->  (
( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   A.wral 2455    i^i cin 3128    C_ wss 3129   (/)c0 3422   suc csuc 4365   omcom 4589  Ind wind 14648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4129  ax-pr 4209  ax-un 4433  ax-bd0 14535  ax-bdor 14538  ax-bdex 14541  ax-bdeq 14542  ax-bdel 14543  ax-bdsb 14544  ax-bdsep 14606
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-sn 3598  df-pr 3599  df-uni 3810  df-int 3845  df-suc 4371  df-iom 4590  df-bdc 14563  df-bj-ind 14649
This theorem is referenced by:  bdpeano5  14665  speano5  14666
  Copyright terms: Public domain W3C validator