Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano5set Unicode version

Theorem peano5set 16075
Description: Version of peano5 4664 when  om  i^i  A is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
peano5set  |-  ( ( om  i^i  A )  e.  V  ->  (
( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem peano5set
StepHypRef Expression
1 bj-omind 16069 . . . . 5  |- Ind  om
2 bj-indind 16067 . . . . 5  |-  ( (Ind 
om  /\  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )  -> Ind  ( om  i^i  A ) )
31, 2mpan 424 . . . 4  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  -> Ind  ( om  i^i  A ) )
4 bj-omssind 16070 . . . . 5  |-  ( ( om  i^i  A )  e.  V  ->  (Ind  ( om  i^i  A )  ->  om  C_  ( om 
i^i  A ) ) )
54imp 124 . . . 4  |-  ( ( ( om  i^i  A
)  e.  V  /\ Ind  ( om  i^i  A ) )  ->  om  C_  ( om  i^i  A ) )
63, 5sylan2 286 . . 3  |-  ( ( ( om  i^i  A
)  e.  V  /\  ( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) ) )  ->  om  C_  ( om  i^i  A ) )
7 inss2 3402 . . 3  |-  ( om 
i^i  A )  C_  A
86, 7sstrdi 3213 . 2  |-  ( ( ( om  i^i  A
)  e.  V  /\  ( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) ) )  ->  om  C_  A
)
98ex 115 1  |-  ( ( om  i^i  A )  e.  V  ->  (
( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   A.wral 2486    i^i cin 3173    C_ wss 3174   (/)c0 3468   suc csuc 4430   omcom 4656  Ind wind 16061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-nul 4186  ax-pr 4269  ax-un 4498  ax-bd0 15948  ax-bdor 15951  ax-bdex 15954  ax-bdeq 15955  ax-bdel 15956  ax-bdsb 15957  ax-bdsep 16019
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-iom 4657  df-bdc 15976  df-bj-ind 16062
This theorem is referenced by:  bdpeano5  16078  speano5  16079
  Copyright terms: Public domain W3C validator