Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano5set Unicode version

Theorem peano5set 13822
Description: Version of peano5 4575 when  om  i^i  A is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
peano5set  |-  ( ( om  i^i  A )  e.  V  ->  (
( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem peano5set
StepHypRef Expression
1 bj-omind 13816 . . . . 5  |- Ind  om
2 bj-indind 13814 . . . . 5  |-  ( (Ind 
om  /\  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )  -> Ind  ( om  i^i  A ) )
31, 2mpan 421 . . . 4  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  -> Ind  ( om  i^i  A ) )
4 bj-omssind 13817 . . . . 5  |-  ( ( om  i^i  A )  e.  V  ->  (Ind  ( om  i^i  A )  ->  om  C_  ( om 
i^i  A ) ) )
54imp 123 . . . 4  |-  ( ( ( om  i^i  A
)  e.  V  /\ Ind  ( om  i^i  A ) )  ->  om  C_  ( om  i^i  A ) )
63, 5sylan2 284 . . 3  |-  ( ( ( om  i^i  A
)  e.  V  /\  ( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) ) )  ->  om  C_  ( om  i^i  A ) )
7 inss2 3343 . . 3  |-  ( om 
i^i  A )  C_  A
86, 7sstrdi 3154 . 2  |-  ( ( ( om  i^i  A
)  e.  V  /\  ( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) ) )  ->  om  C_  A
)
98ex 114 1  |-  ( ( om  i^i  A )  e.  V  ->  (
( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   A.wral 2444    i^i cin 3115    C_ wss 3116   (/)c0 3409   suc csuc 4343   omcom 4567  Ind wind 13808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-nul 4108  ax-pr 4187  ax-un 4411  ax-bd0 13695  ax-bdor 13698  ax-bdex 13701  ax-bdeq 13702  ax-bdel 13703  ax-bdsb 13704  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-iom 4568  df-bdc 13723  df-bj-ind 13809
This theorem is referenced by:  bdpeano5  13825  speano5  13826
  Copyright terms: Public domain W3C validator