Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omssind GIF version

Theorem bj-omssind 15427
Description: ω is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-omssind (𝐴𝑉 → (Ind 𝐴 → ω ⊆ 𝐴))

Proof of Theorem bj-omssind
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2336 . . 3 𝑥𝐴
2 nfv 1539 . . 3 𝑥Ind 𝐴
3 bj-indeq 15421 . . . 4 (𝑥 = 𝐴 → (Ind 𝑥 ↔ Ind 𝐴))
43biimprd 158 . . 3 (𝑥 = 𝐴 → (Ind 𝐴 → Ind 𝑥))
51, 2, 4bj-intabssel1 15282 . 2 (𝐴𝑉 → (Ind 𝐴 {𝑥 ∣ Ind 𝑥} ⊆ 𝐴))
6 bj-dfom 15425 . . 3 ω = {𝑥 ∣ Ind 𝑥}
76sseq1i 3205 . 2 (ω ⊆ 𝐴 {𝑥 ∣ Ind 𝑥} ⊆ 𝐴)
85, 7imbitrrdi 162 1 (𝐴𝑉 → (Ind 𝐴 → ω ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  {cab 2179  wss 3153   cint 3870  ωcom 4622  Ind wind 15418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3159  df-ss 3166  df-int 3871  df-iom 4623  df-bj-ind 15419
This theorem is referenced by:  bj-om  15429  peano5set  15432
  Copyright terms: Public domain W3C validator