Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omssind GIF version

Theorem bj-omssind 15871
Description: ω is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-omssind (𝐴𝑉 → (Ind 𝐴 → ω ⊆ 𝐴))

Proof of Theorem bj-omssind
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2348 . . 3 𝑥𝐴
2 nfv 1551 . . 3 𝑥Ind 𝐴
3 bj-indeq 15865 . . . 4 (𝑥 = 𝐴 → (Ind 𝑥 ↔ Ind 𝐴))
43biimprd 158 . . 3 (𝑥 = 𝐴 → (Ind 𝐴 → Ind 𝑥))
51, 2, 4bj-intabssel1 15726 . 2 (𝐴𝑉 → (Ind 𝐴 {𝑥 ∣ Ind 𝑥} ⊆ 𝐴))
6 bj-dfom 15869 . . 3 ω = {𝑥 ∣ Ind 𝑥}
76sseq1i 3219 . 2 (ω ⊆ 𝐴 {𝑥 ∣ Ind 𝑥} ⊆ 𝐴)
85, 7imbitrrdi 162 1 (𝐴𝑉 → (Ind 𝐴 → ω ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176  {cab 2191  wss 3166   cint 3885  ωcom 4638  Ind wind 15862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-ss 3179  df-int 3886  df-iom 4639  df-bj-ind 15863
This theorem is referenced by:  bj-om  15873  peano5set  15876
  Copyright terms: Public domain W3C validator