| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omssind | GIF version | ||
| Description: ω is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-omssind | ⊢ (𝐴 ∈ 𝑉 → (Ind 𝐴 → ω ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1552 | . . 3 ⊢ Ⅎ𝑥Ind 𝐴 | |
| 3 | bj-indeq 16064 | . . . 4 ⊢ (𝑥 = 𝐴 → (Ind 𝑥 ↔ Ind 𝐴)) | |
| 4 | 3 | biimprd 158 | . . 3 ⊢ (𝑥 = 𝐴 → (Ind 𝐴 → Ind 𝑥)) |
| 5 | 1, 2, 4 | bj-intabssel1 15926 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Ind 𝐴 → ∩ {𝑥 ∣ Ind 𝑥} ⊆ 𝐴)) |
| 6 | bj-dfom 16068 | . . 3 ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} | |
| 7 | 6 | sseq1i 3227 | . 2 ⊢ (ω ⊆ 𝐴 ↔ ∩ {𝑥 ∣ Ind 𝑥} ⊆ 𝐴) |
| 8 | 5, 7 | imbitrrdi 162 | 1 ⊢ (𝐴 ∈ 𝑉 → (Ind 𝐴 → ω ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 {cab 2193 ⊆ wss 3174 ∩ cint 3899 ωcom 4656 Ind wind 16061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-in 3180 df-ss 3187 df-int 3900 df-iom 4657 df-bj-ind 16062 |
| This theorem is referenced by: bj-om 16072 peano5set 16075 |
| Copyright terms: Public domain | W3C validator |