Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omssind | GIF version |
Description: ω is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-omssind | ⊢ (𝐴 ∈ 𝑉 → (Ind 𝐴 → ω ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1521 | . . 3 ⊢ Ⅎ𝑥Ind 𝐴 | |
3 | bj-indeq 13964 | . . . 4 ⊢ (𝑥 = 𝐴 → (Ind 𝑥 ↔ Ind 𝐴)) | |
4 | 3 | biimprd 157 | . . 3 ⊢ (𝑥 = 𝐴 → (Ind 𝐴 → Ind 𝑥)) |
5 | 1, 2, 4 | bj-intabssel1 13825 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Ind 𝐴 → ∩ {𝑥 ∣ Ind 𝑥} ⊆ 𝐴)) |
6 | bj-dfom 13968 | . . 3 ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} | |
7 | 6 | sseq1i 3173 | . 2 ⊢ (ω ⊆ 𝐴 ↔ ∩ {𝑥 ∣ Ind 𝑥} ⊆ 𝐴) |
8 | 5, 7 | syl6ibr 161 | 1 ⊢ (𝐴 ∈ 𝑉 → (Ind 𝐴 → ω ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 {cab 2156 ⊆ wss 3121 ∩ cint 3831 ωcom 4574 Ind wind 13961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-int 3832 df-iom 4575 df-bj-ind 13962 |
This theorem is referenced by: bj-om 13972 peano5set 13975 |
Copyright terms: Public domain | W3C validator |