Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omssind GIF version

Theorem bj-omssind 15581
Description: ω is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-omssind (𝐴𝑉 → (Ind 𝐴 → ω ⊆ 𝐴))

Proof of Theorem bj-omssind
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2339 . . 3 𝑥𝐴
2 nfv 1542 . . 3 𝑥Ind 𝐴
3 bj-indeq 15575 . . . 4 (𝑥 = 𝐴 → (Ind 𝑥 ↔ Ind 𝐴))
43biimprd 158 . . 3 (𝑥 = 𝐴 → (Ind 𝐴 → Ind 𝑥))
51, 2, 4bj-intabssel1 15436 . 2 (𝐴𝑉 → (Ind 𝐴 {𝑥 ∣ Ind 𝑥} ⊆ 𝐴))
6 bj-dfom 15579 . . 3 ω = {𝑥 ∣ Ind 𝑥}
76sseq1i 3209 . 2 (ω ⊆ 𝐴 {𝑥 ∣ Ind 𝑥} ⊆ 𝐴)
85, 7imbitrrdi 162 1 (𝐴𝑉 → (Ind 𝐴 → ω ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {cab 2182  wss 3157   cint 3874  ωcom 4626  Ind wind 15572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-int 3875  df-iom 4627  df-bj-ind 15573
This theorem is referenced by:  bj-om  15583  peano5set  15586
  Copyright terms: Public domain W3C validator