Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omssind GIF version

Theorem bj-omssind 14772
Description: ω is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-omssind (𝐴𝑉 → (Ind 𝐴 → ω ⊆ 𝐴))

Proof of Theorem bj-omssind
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2319 . . 3 𝑥𝐴
2 nfv 1528 . . 3 𝑥Ind 𝐴
3 bj-indeq 14766 . . . 4 (𝑥 = 𝐴 → (Ind 𝑥 ↔ Ind 𝐴))
43biimprd 158 . . 3 (𝑥 = 𝐴 → (Ind 𝐴 → Ind 𝑥))
51, 2, 4bj-intabssel1 14627 . 2 (𝐴𝑉 → (Ind 𝐴 {𝑥 ∣ Ind 𝑥} ⊆ 𝐴))
6 bj-dfom 14770 . . 3 ω = {𝑥 ∣ Ind 𝑥}
76sseq1i 3183 . 2 (ω ⊆ 𝐴 {𝑥 ∣ Ind 𝑥} ⊆ 𝐴)
85, 7imbitrrdi 162 1 (𝐴𝑉 → (Ind 𝐴 → ω ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  {cab 2163  wss 3131   cint 3846  ωcom 4591  Ind wind 14763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-in 3137  df-ss 3144  df-int 3847  df-iom 4592  df-bj-ind 14764
This theorem is referenced by:  bj-om  14774  peano5set  14777
  Copyright terms: Public domain W3C validator