![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omssind | GIF version |
Description: ω is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-omssind | ⊢ (𝐴 ∈ 𝑉 → (Ind 𝐴 → ω ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2329 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1538 | . . 3 ⊢ Ⅎ𝑥Ind 𝐴 | |
3 | bj-indeq 14977 | . . . 4 ⊢ (𝑥 = 𝐴 → (Ind 𝑥 ↔ Ind 𝐴)) | |
4 | 3 | biimprd 158 | . . 3 ⊢ (𝑥 = 𝐴 → (Ind 𝐴 → Ind 𝑥)) |
5 | 1, 2, 4 | bj-intabssel1 14838 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Ind 𝐴 → ∩ {𝑥 ∣ Ind 𝑥} ⊆ 𝐴)) |
6 | bj-dfom 14981 | . . 3 ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} | |
7 | 6 | sseq1i 3193 | . 2 ⊢ (ω ⊆ 𝐴 ↔ ∩ {𝑥 ∣ Ind 𝑥} ⊆ 𝐴) |
8 | 5, 7 | imbitrrdi 162 | 1 ⊢ (𝐴 ∈ 𝑉 → (Ind 𝐴 → ω ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 {cab 2173 ⊆ wss 3141 ∩ cint 3856 ωcom 4601 Ind wind 14974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-v 2751 df-in 3147 df-ss 3154 df-int 3857 df-iom 4602 df-bj-ind 14975 |
This theorem is referenced by: bj-om 14985 peano5set 14988 |
Copyright terms: Public domain | W3C validator |