Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sucex Unicode version

Theorem bj-sucex 14915
Description: sucex 4510 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-sucex.1  |-  A  e. 
_V
Assertion
Ref Expression
bj-sucex  |-  suc  A  e.  _V

Proof of Theorem bj-sucex
StepHypRef Expression
1 bj-sucex.1 . 2  |-  A  e. 
_V
2 bj-sucexg 14914 . 2  |-  ( A  e.  _V  ->  suc  A  e.  _V )
31, 2ax-mp 5 1  |-  suc  A  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2158   _Vcvv 2749   suc csuc 4377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-pr 4221  ax-un 4445  ax-bd0 14805  ax-bdor 14808  ax-bdex 14811  ax-bdeq 14812  ax-bdel 14813  ax-bdsb 14814  ax-bdsep 14876
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-uni 3822  df-suc 4383  df-bdc 14833
This theorem is referenced by:  bj-indint  14923  bj-bdfindis  14939  bj-inf2vnlem1  14962
  Copyright terms: Public domain W3C validator