Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sucex Unicode version

Theorem bj-sucex 15653
Description: sucex 4536 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-sucex.1  |-  A  e. 
_V
Assertion
Ref Expression
bj-sucex  |-  suc  A  e.  _V

Proof of Theorem bj-sucex
StepHypRef Expression
1 bj-sucex.1 . 2  |-  A  e. 
_V
2 bj-sucexg 15652 . 2  |-  ( A  e.  _V  ->  suc  A  e.  _V )
31, 2ax-mp 5 1  |-  suc  A  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   _Vcvv 2763   suc csuc 4401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-pr 4243  ax-un 4469  ax-bd0 15543  ax-bdor 15546  ax-bdex 15549  ax-bdeq 15550  ax-bdel 15551  ax-bdsb 15552  ax-bdsep 15614
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-uni 3841  df-suc 4407  df-bdc 15571
This theorem is referenced by:  bj-indint  15661  bj-bdfindis  15677  bj-inf2vnlem1  15700
  Copyright terms: Public domain W3C validator