Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sucex GIF version

Theorem bj-sucex 15821
Description: sucex 4546 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-sucex.1 𝐴 ∈ V
Assertion
Ref Expression
bj-sucex suc 𝐴 ∈ V

Proof of Theorem bj-sucex
StepHypRef Expression
1 bj-sucex.1 . 2 𝐴 ∈ V
2 bj-sucexg 15820 . 2 (𝐴 ∈ V → suc 𝐴 ∈ V)
31, 2ax-mp 5 1 suc 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2175  Vcvv 2771  suc csuc 4411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-pr 4252  ax-un 4479  ax-bd0 15711  ax-bdor 15714  ax-bdex 15717  ax-bdeq 15718  ax-bdel 15719  ax-bdsb 15720  ax-bdsep 15782
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-uni 3850  df-suc 4417  df-bdc 15739
This theorem is referenced by:  bj-indint  15829  bj-bdfindis  15845  bj-inf2vnlem1  15868
  Copyright terms: Public domain W3C validator