Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sucex | GIF version |
Description: sucex 4476 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-sucex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
bj-sucex | ⊢ suc 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | bj-sucexg 13804 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 suc csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-pr 4187 ax-un 4411 ax-bd0 13695 ax-bdor 13698 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 df-suc 4349 df-bdc 13723 |
This theorem is referenced by: bj-indint 13813 bj-bdfindis 13829 bj-inf2vnlem1 13852 |
Copyright terms: Public domain | W3C validator |