Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sucex GIF version

Theorem bj-sucex 14815
Description: sucex 4500 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-sucex.1 𝐴 ∈ V
Assertion
Ref Expression
bj-sucex suc 𝐴 ∈ V

Proof of Theorem bj-sucex
StepHypRef Expression
1 bj-sucex.1 . 2 𝐴 ∈ V
2 bj-sucexg 14814 . 2 (𝐴 ∈ V → suc 𝐴 ∈ V)
31, 2ax-mp 5 1 suc 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2148  Vcvv 2739  suc csuc 4367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-pr 4211  ax-un 4435  ax-bd0 14705  ax-bdor 14708  ax-bdex 14711  ax-bdeq 14712  ax-bdel 14713  ax-bdsb 14714  ax-bdsep 14776
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-uni 3812  df-suc 4373  df-bdc 14733
This theorem is referenced by:  bj-indint  14823  bj-bdfindis  14839  bj-inf2vnlem1  14862
  Copyright terms: Public domain W3C validator