| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sucex | GIF version | ||
| Description: sucex 4546 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-sucex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| bj-sucex | ⊢ suc 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | bj-sucexg 15820 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 suc csuc 4411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-pr 4252 ax-un 4479 ax-bd0 15711 ax-bdor 15714 ax-bdex 15717 ax-bdeq 15718 ax-bdel 15719 ax-bdsb 15720 ax-bdsep 15782 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-uni 3850 df-suc 4417 df-bdc 15739 |
| This theorem is referenced by: bj-indint 15829 bj-bdfindis 15845 bj-inf2vnlem1 15868 |
| Copyright terms: Public domain | W3C validator |