ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structex Unicode version

Theorem structex 11985
Description: A structure is a set. (Contributed by AV, 10-Nov-2021.)
Assertion
Ref Expression
structex  |-  ( G Struct  X  ->  G  e.  _V )

Proof of Theorem structex
StepHypRef Expression
1 brstruct 11982 . 2  |-  Rel Struct
21brrelex1i 4582 1  |-  ( G Struct  X  ->  G  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1480   _Vcvv 2686   class class class wbr 3929   Struct cstr 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-struct 11975
This theorem is referenced by:  strsetsid  12006  setsn0fun  12010  strslfv  12017  strleund  12061  strleun  12062  opelstrsl  12069
  Copyright terms: Public domain W3C validator