| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > structex | Unicode version | ||
| Description: A structure is a set. (Contributed by AV, 10-Nov-2021.) |
| Ref | Expression |
|---|---|
| structex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brstruct 13049 |
. 2
| |
| 2 | 1 | brrelex1i 4762 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-struct 13042 |
| This theorem is referenced by: strsetsid 13073 setsn0fun 13077 strslfv 13085 strslfv3 13086 bassetsnn 13097 strressid 13112 strleund 13144 strleun 13145 strext 13146 opelstrsl 13155 cnfldex 14531 basvtxval2dom 15843 edgfiedgval2dom 15844 structgr2slots2dom 15850 setsvtx 15860 setsiedg 15861 usgrstrrepeen 16037 |
| Copyright terms: Public domain | W3C validator |