ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structex Unicode version

Theorem structex 12417
Description: A structure is a set. (Contributed by AV, 10-Nov-2021.)
Assertion
Ref Expression
structex  |-  ( G Struct  X  ->  G  e.  _V )

Proof of Theorem structex
StepHypRef Expression
1 brstruct 12414 . 2  |-  Rel Struct
21brrelex1i 4652 1  |-  ( G Struct  X  ->  G  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   _Vcvv 2730   class class class wbr 3987   Struct cstr 12401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-xp 4615  df-rel 4616  df-struct 12407
This theorem is referenced by:  strsetsid  12438  setsn0fun  12442  strslfv  12449  strleund  12495  strleun  12496  opelstrsl  12503
  Copyright terms: Public domain W3C validator