ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structex Unicode version

Theorem structex 11671
Description: A structure is a set. (Contributed by AV, 10-Nov-2021.)
Assertion
Ref Expression
structex  |-  ( G Struct  X  ->  G  e.  _V )

Proof of Theorem structex
StepHypRef Expression
1 brstruct 11668 . 2  |-  Rel Struct
21brrelex1i 4510 1  |-  ( G Struct  X  ->  G  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1445   _Vcvv 2633   class class class wbr 3867   Struct cstr 11655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-br 3868  df-opab 3922  df-xp 4473  df-rel 4474  df-struct 11661
This theorem is referenced by:  strsetsid  11692  setsn0fun  11696  strslfv  11703  strleund  11747  strleun  11748  opelstrsl  11755
  Copyright terms: Public domain W3C validator