Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptfvex | Unicode version |
Description: Sufficient condition for a maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
fvmpt2.1 |
Ref | Expression |
---|---|
mptfvex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3058 | . . 3 | |
2 | fvmpt2.1 | . . . 4 | |
3 | nfcv 2317 | . . . . 5 | |
4 | nfcsb1v 3088 | . . . . 5 | |
5 | csbeq1a 3064 | . . . . 5 | |
6 | 3, 4, 5 | cbvmpt 4093 | . . . 4 |
7 | 2, 6 | eqtri 2196 | . . 3 |
8 | 1, 7 | fvmptss2 5583 | . 2 |
9 | elex 2746 | . . . . . 6 | |
10 | 9 | alimi 1453 | . . . . 5 |
11 | 3 | nfel1 2328 | . . . . . 6 |
12 | 4 | nfel1 2328 | . . . . . 6 |
13 | 5 | eleq1d 2244 | . . . . . 6 |
14 | 11, 12, 13 | cbval 1752 | . . . . 5 |
15 | 10, 14 | sylib 122 | . . . 4 |
16 | 1 | eleq1d 2244 | . . . . 5 |
17 | 16 | spcgv 2822 | . . . 4 |
18 | 15, 17 | syl5 32 | . . 3 |
19 | 18 | impcom 125 | . 2 |
20 | ssexg 4137 | . 2 | |
21 | 8, 19, 20 | sylancr 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wal 1351 wceq 1353 wcel 2146 cvv 2735 csb 3055 wss 3127 cmpt 4059 cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-iota 5170 df-fun 5210 df-fv 5216 |
This theorem is referenced by: mpofvex 6194 xpcomco 6816 |
Copyright terms: Public domain | W3C validator |