ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptfvex Unicode version

Theorem mptfvex 5581
Description: Sufficient condition for a maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptfvex  |-  ( ( A. x  B  e.  V  /\  C  e.  W )  ->  ( F `  C )  e.  _V )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    F( x)    V( x)    W( x)

Proof of Theorem mptfvex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3052 . . 3  |-  ( y  =  C  ->  [_ y  /  x ]_ B  = 
[_ C  /  x ]_ B )
2 fvmpt2.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
3 nfcv 2312 . . . . 5  |-  F/_ y B
4 nfcsb1v 3082 . . . . 5  |-  F/_ x [_ y  /  x ]_ B
5 csbeq1a 3058 . . . . 5  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
63, 4, 5cbvmpt 4084 . . . 4  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
72, 6eqtri 2191 . . 3  |-  F  =  ( y  e.  A  |-> 
[_ y  /  x ]_ B )
81, 7fvmptss2 5571 . 2  |-  ( F `
 C )  C_  [_ C  /  x ]_ B
9 elex 2741 . . . . . 6  |-  ( B  e.  V  ->  B  e.  _V )
109alimi 1448 . . . . 5  |-  ( A. x  B  e.  V  ->  A. x  B  e. 
_V )
113nfel1 2323 . . . . . 6  |-  F/ y  B  e.  _V
124nfel1 2323 . . . . . 6  |-  F/ x [_ y  /  x ]_ B  e.  _V
135eleq1d 2239 . . . . . 6  |-  ( x  =  y  ->  ( B  e.  _V  <->  [_ y  /  x ]_ B  e.  _V ) )
1411, 12, 13cbval 1747 . . . . 5  |-  ( A. x  B  e.  _V  <->  A. y [_ y  /  x ]_ B  e.  _V )
1510, 14sylib 121 . . . 4  |-  ( A. x  B  e.  V  ->  A. y [_ y  /  x ]_ B  e. 
_V )
161eleq1d 2239 . . . . 5  |-  ( y  =  C  ->  ( [_ y  /  x ]_ B  e.  _V  <->  [_ C  /  x ]_ B  e.  _V )
)
1716spcgv 2817 . . . 4  |-  ( C  e.  W  ->  ( A. y [_ y  /  x ]_ B  e.  _V  ->  [_ C  /  x ]_ B  e.  _V ) )
1815, 17syl5 32 . . 3  |-  ( C  e.  W  ->  ( A. x  B  e.  V  ->  [_ C  /  x ]_ B  e.  _V ) )
1918impcom 124 . 2  |-  ( ( A. x  B  e.  V  /\  C  e.  W )  ->  [_ C  /  x ]_ B  e. 
_V )
20 ssexg 4128 . 2  |-  ( ( ( F `  C
)  C_  [_ C  /  x ]_ B  /\  [_ C  /  x ]_ B  e. 
_V )  ->  ( F `  C )  e.  _V )
218, 19, 20sylancr 412 1  |-  ( ( A. x  B  e.  V  /\  C  e.  W )  ->  ( F `  C )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346    = wceq 1348    e. wcel 2141   _Vcvv 2730   [_csb 3049    C_ wss 3121    |-> cmpt 4050   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by:  mpofvex  6182  xpcomco  6804
  Copyright terms: Public domain W3C validator