ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptfvex Unicode version

Theorem mptfvex 5672
Description: Sufficient condition for a maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptfvex  |-  ( ( A. x  B  e.  V  /\  C  e.  W )  ->  ( F `  C )  e.  _V )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    F( x)    V( x)    W( x)

Proof of Theorem mptfvex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3097 . . 3  |-  ( y  =  C  ->  [_ y  /  x ]_ B  = 
[_ C  /  x ]_ B )
2 fvmpt2.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
3 nfcv 2349 . . . . 5  |-  F/_ y B
4 nfcsb1v 3127 . . . . 5  |-  F/_ x [_ y  /  x ]_ B
5 csbeq1a 3103 . . . . 5  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
63, 4, 5cbvmpt 4143 . . . 4  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
72, 6eqtri 2227 . . 3  |-  F  =  ( y  e.  A  |-> 
[_ y  /  x ]_ B )
81, 7fvmptss2 5661 . 2  |-  ( F `
 C )  C_  [_ C  /  x ]_ B
9 elex 2784 . . . . . 6  |-  ( B  e.  V  ->  B  e.  _V )
109alimi 1479 . . . . 5  |-  ( A. x  B  e.  V  ->  A. x  B  e. 
_V )
113nfel1 2360 . . . . . 6  |-  F/ y  B  e.  _V
124nfel1 2360 . . . . . 6  |-  F/ x [_ y  /  x ]_ B  e.  _V
135eleq1d 2275 . . . . . 6  |-  ( x  =  y  ->  ( B  e.  _V  <->  [_ y  /  x ]_ B  e.  _V ) )
1411, 12, 13cbval 1778 . . . . 5  |-  ( A. x  B  e.  _V  <->  A. y [_ y  /  x ]_ B  e.  _V )
1510, 14sylib 122 . . . 4  |-  ( A. x  B  e.  V  ->  A. y [_ y  /  x ]_ B  e. 
_V )
161eleq1d 2275 . . . . 5  |-  ( y  =  C  ->  ( [_ y  /  x ]_ B  e.  _V  <->  [_ C  /  x ]_ B  e.  _V )
)
1716spcgv 2861 . . . 4  |-  ( C  e.  W  ->  ( A. y [_ y  /  x ]_ B  e.  _V  ->  [_ C  /  x ]_ B  e.  _V ) )
1815, 17syl5 32 . . 3  |-  ( C  e.  W  ->  ( A. x  B  e.  V  ->  [_ C  /  x ]_ B  e.  _V ) )
1918impcom 125 . 2  |-  ( ( A. x  B  e.  V  /\  C  e.  W )  ->  [_ C  /  x ]_ B  e. 
_V )
20 ssexg 4187 . 2  |-  ( ( ( F `  C
)  C_  [_ C  /  x ]_ B  /\  [_ C  /  x ]_ B  e. 
_V )  ->  ( F `  C )  e.  _V )
218, 19, 20sylancr 414 1  |-  ( ( A. x  B  e.  V  /\  C  e.  W )  ->  ( F `  C )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373    e. wcel 2177   _Vcvv 2773   [_csb 3094    C_ wss 3167    |-> cmpt 4109   ` cfv 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-iota 5237  df-fun 5278  df-fv 5284
This theorem is referenced by:  mpofvex  6298  xpcomco  6928  lssex  14160  mopnset  14358  metuex  14361
  Copyright terms: Public domain W3C validator