| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptfvex | Unicode version | ||
| Description: Sufficient condition for a maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| Ref | Expression |
|---|---|
| fvmpt2.1 |
|
| Ref | Expression |
|---|---|
| mptfvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3127 |
. . 3
| |
| 2 | fvmpt2.1 |
. . . 4
| |
| 3 | nfcv 2372 |
. . . . 5
| |
| 4 | nfcsb1v 3157 |
. . . . 5
| |
| 5 | csbeq1a 3133 |
. . . . 5
| |
| 6 | 3, 4, 5 | cbvmpt 4178 |
. . . 4
|
| 7 | 2, 6 | eqtri 2250 |
. . 3
|
| 8 | 1, 7 | fvmptss2 5702 |
. 2
|
| 9 | elex 2811 |
. . . . . 6
| |
| 10 | 9 | alimi 1501 |
. . . . 5
|
| 11 | 3 | nfel1 2383 |
. . . . . 6
|
| 12 | 4 | nfel1 2383 |
. . . . . 6
|
| 13 | 5 | eleq1d 2298 |
. . . . . 6
|
| 14 | 11, 12, 13 | cbval 1800 |
. . . . 5
|
| 15 | 10, 14 | sylib 122 |
. . . 4
|
| 16 | 1 | eleq1d 2298 |
. . . . 5
|
| 17 | 16 | spcgv 2890 |
. . . 4
|
| 18 | 15, 17 | syl5 32 |
. . 3
|
| 19 | 18 | impcom 125 |
. 2
|
| 20 | ssexg 4222 |
. 2
| |
| 21 | 8, 19, 20 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-iota 5274 df-fun 5316 df-fv 5322 |
| This theorem is referenced by: mpofvex 6341 xpcomco 6973 lssex 14303 mopnset 14501 metuex 14504 |
| Copyright terms: Public domain | W3C validator |