ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptfvex Unicode version

Theorem mptfvex 5593
Description: Sufficient condition for a maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptfvex  |-  ( ( A. x  B  e.  V  /\  C  e.  W )  ->  ( F `  C )  e.  _V )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    F( x)    V( x)    W( x)

Proof of Theorem mptfvex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3058 . . 3  |-  ( y  =  C  ->  [_ y  /  x ]_ B  = 
[_ C  /  x ]_ B )
2 fvmpt2.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
3 nfcv 2317 . . . . 5  |-  F/_ y B
4 nfcsb1v 3088 . . . . 5  |-  F/_ x [_ y  /  x ]_ B
5 csbeq1a 3064 . . . . 5  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
63, 4, 5cbvmpt 4093 . . . 4  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
72, 6eqtri 2196 . . 3  |-  F  =  ( y  e.  A  |-> 
[_ y  /  x ]_ B )
81, 7fvmptss2 5583 . 2  |-  ( F `
 C )  C_  [_ C  /  x ]_ B
9 elex 2746 . . . . . 6  |-  ( B  e.  V  ->  B  e.  _V )
109alimi 1453 . . . . 5  |-  ( A. x  B  e.  V  ->  A. x  B  e. 
_V )
113nfel1 2328 . . . . . 6  |-  F/ y  B  e.  _V
124nfel1 2328 . . . . . 6  |-  F/ x [_ y  /  x ]_ B  e.  _V
135eleq1d 2244 . . . . . 6  |-  ( x  =  y  ->  ( B  e.  _V  <->  [_ y  /  x ]_ B  e.  _V ) )
1411, 12, 13cbval 1752 . . . . 5  |-  ( A. x  B  e.  _V  <->  A. y [_ y  /  x ]_ B  e.  _V )
1510, 14sylib 122 . . . 4  |-  ( A. x  B  e.  V  ->  A. y [_ y  /  x ]_ B  e. 
_V )
161eleq1d 2244 . . . . 5  |-  ( y  =  C  ->  ( [_ y  /  x ]_ B  e.  _V  <->  [_ C  /  x ]_ B  e.  _V )
)
1716spcgv 2822 . . . 4  |-  ( C  e.  W  ->  ( A. y [_ y  /  x ]_ B  e.  _V  ->  [_ C  /  x ]_ B  e.  _V ) )
1815, 17syl5 32 . . 3  |-  ( C  e.  W  ->  ( A. x  B  e.  V  ->  [_ C  /  x ]_ B  e.  _V ) )
1918impcom 125 . 2  |-  ( ( A. x  B  e.  V  /\  C  e.  W )  ->  [_ C  /  x ]_ B  e. 
_V )
20 ssexg 4137 . 2  |-  ( ( ( F `  C
)  C_  [_ C  /  x ]_ B  /\  [_ C  /  x ]_ B  e. 
_V )  ->  ( F `  C )  e.  _V )
218, 19, 20sylancr 414 1  |-  ( ( A. x  B  e.  V  /\  C  e.  W )  ->  ( F `  C )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351    = wceq 1353    e. wcel 2146   _Vcvv 2735   [_csb 3055    C_ wss 3127    |-> cmpt 4059   ` cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-iota 5170  df-fun 5210  df-fv 5216
This theorem is referenced by:  mpofvex  6194  xpcomco  6816
  Copyright terms: Public domain W3C validator