ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptfvex Unicode version

Theorem mptfvex 5614
Description: Sufficient condition for a maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptfvex  |-  ( ( A. x  B  e.  V  /\  C  e.  W )  ->  ( F `  C )  e.  _V )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    F( x)    V( x)    W( x)

Proof of Theorem mptfvex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3072 . . 3  |-  ( y  =  C  ->  [_ y  /  x ]_ B  = 
[_ C  /  x ]_ B )
2 fvmpt2.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
3 nfcv 2329 . . . . 5  |-  F/_ y B
4 nfcsb1v 3102 . . . . 5  |-  F/_ x [_ y  /  x ]_ B
5 csbeq1a 3078 . . . . 5  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
63, 4, 5cbvmpt 4110 . . . 4  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
72, 6eqtri 2208 . . 3  |-  F  =  ( y  e.  A  |-> 
[_ y  /  x ]_ B )
81, 7fvmptss2 5604 . 2  |-  ( F `
 C )  C_  [_ C  /  x ]_ B
9 elex 2760 . . . . . 6  |-  ( B  e.  V  ->  B  e.  _V )
109alimi 1465 . . . . 5  |-  ( A. x  B  e.  V  ->  A. x  B  e. 
_V )
113nfel1 2340 . . . . . 6  |-  F/ y  B  e.  _V
124nfel1 2340 . . . . . 6  |-  F/ x [_ y  /  x ]_ B  e.  _V
135eleq1d 2256 . . . . . 6  |-  ( x  =  y  ->  ( B  e.  _V  <->  [_ y  /  x ]_ B  e.  _V ) )
1411, 12, 13cbval 1764 . . . . 5  |-  ( A. x  B  e.  _V  <->  A. y [_ y  /  x ]_ B  e.  _V )
1510, 14sylib 122 . . . 4  |-  ( A. x  B  e.  V  ->  A. y [_ y  /  x ]_ B  e. 
_V )
161eleq1d 2256 . . . . 5  |-  ( y  =  C  ->  ( [_ y  /  x ]_ B  e.  _V  <->  [_ C  /  x ]_ B  e.  _V )
)
1716spcgv 2836 . . . 4  |-  ( C  e.  W  ->  ( A. y [_ y  /  x ]_ B  e.  _V  ->  [_ C  /  x ]_ B  e.  _V ) )
1815, 17syl5 32 . . 3  |-  ( C  e.  W  ->  ( A. x  B  e.  V  ->  [_ C  /  x ]_ B  e.  _V ) )
1918impcom 125 . 2  |-  ( ( A. x  B  e.  V  /\  C  e.  W )  ->  [_ C  /  x ]_ B  e. 
_V )
20 ssexg 4154 . 2  |-  ( ( ( F `  C
)  C_  [_ C  /  x ]_ B  /\  [_ C  /  x ]_ B  e. 
_V )  ->  ( F `  C )  e.  _V )
218, 19, 20sylancr 414 1  |-  ( ( A. x  B  e.  V  /\  C  e.  W )  ->  ( F `  C )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1361    = wceq 1363    e. wcel 2158   _Vcvv 2749   [_csb 3069    C_ wss 3141    |-> cmpt 4076   ` cfv 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-iota 5190  df-fun 5230  df-fv 5236
This theorem is referenced by:  mpofvex  6217  xpcomco  6839  lssex  13506
  Copyright terms: Public domain W3C validator