Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-charfunbi | Unicode version |
Description: In an ambient set , if membership in is stable, then it is
decidable if and only if has a characteristic function.
This characterization can be applied to singletons when the set has stable equality, which is the case as soon as it has a tight apartness relation. (Contributed by BJ, 6-Aug-2024.) |
Ref | Expression |
---|---|
bj-charfunbi.ex | |
bj-charfunbi.st | STAB |
Ref | Expression |
---|---|
bj-charfunbi | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2227 | . . . . 5 | |
2 | 1 | dcbid 828 | . . . 4 DECID DECID |
3 | 2 | cbvralvw 2696 | . . 3 DECID DECID |
4 | eleq1w 2227 | . . . . . . . . . . . 12 | |
5 | 4 | ifbid 3541 | . . . . . . . . . . 11 |
6 | 5 | cbvmptv 4078 | . . . . . . . . . 10 |
7 | 6 | a1i 9 | . . . . . . . . 9 DECID |
8 | 3 | biimpri 132 | . . . . . . . . . 10 DECID DECID |
9 | 8 | adantl 275 | . . . . . . . . 9 DECID DECID |
10 | 7, 9 | bj-charfundc 13690 | . . . . . . . 8 DECID |
11 | 10 | ex 114 | . . . . . . 7 DECID |
12 | 2on 6393 | . . . . . . . . . . 11 | |
13 | 12 | a1i 9 | . . . . . . . . . 10 |
14 | bj-charfunbi.ex | . . . . . . . . . 10 | |
15 | 13, 14 | elmapd 6628 | . . . . . . . . 9 |
16 | 15 | biimprd 157 | . . . . . . . 8 |
17 | 16 | adantrd 277 | . . . . . . 7 |
18 | 11, 17 | syld 45 | . . . . . 6 DECID |
19 | 18 | imp 123 | . . . . 5 DECID |
20 | fveq1 5485 | . . . . . . . . 9 | |
21 | 20 | eqeq1d 2174 | . . . . . . . 8 |
22 | 21 | ralbidv 2466 | . . . . . . 7 |
23 | 20 | eqeq1d 2174 | . . . . . . . 8 |
24 | 23 | ralbidv 2466 | . . . . . . 7 |
25 | 22, 24 | anbi12d 465 | . . . . . 6 |
26 | 25 | adantl 275 | . . . . 5 DECID |
27 | 10 | simprd 113 | . . . . 5 DECID |
28 | 19, 26, 27 | rspcedvd 2836 | . . . 4 DECID |
29 | 28 | ex 114 | . . 3 DECID |
30 | 3, 29 | syl5bi 151 | . 2 DECID |
31 | omex 4570 | . . . . . . . . 9 | |
32 | 2ssom 13684 | . . . . . . . . 9 | |
33 | mapss 6657 | . . . . . . . . 9 | |
34 | 31, 32, 33 | mp2an 423 | . . . . . . . 8 |
35 | fveq1 5485 | . . . . . . . . . . . . 13 | |
36 | 35 | eqeq1d 2174 | . . . . . . . . . . . 12 |
37 | 36 | ralbidv 2466 | . . . . . . . . . . 11 |
38 | 35 | eqeq1d 2174 | . . . . . . . . . . . 12 |
39 | 38 | ralbidv 2466 | . . . . . . . . . . 11 |
40 | 37, 39 | anbi12d 465 | . . . . . . . . . 10 |
41 | 40 | cbvrexvw 2697 | . . . . . . . . 9 |
42 | fveqeq2 5495 | . . . . . . . . . . . . 13 | |
43 | 42 | cbvralvw 2696 | . . . . . . . . . . . 12 |
44 | 1n0 6400 | . . . . . . . . . . . . . . . 16 | |
45 | 44 | neii 2338 | . . . . . . . . . . . . . . 15 |
46 | eqeq1 2172 | . . . . . . . . . . . . . . 15 | |
47 | 45, 46 | mtbiri 665 | . . . . . . . . . . . . . 14 |
48 | 47 | neqned 2343 | . . . . . . . . . . . . 13 |
49 | 48 | ralimi 2529 | . . . . . . . . . . . 12 |
50 | 43, 49 | sylbi 120 | . . . . . . . . . . 11 |
51 | fveqeq2 5495 | . . . . . . . . . . . . 13 | |
52 | 51 | cbvralvw 2696 | . . . . . . . . . . . 12 |
53 | 52 | biimpi 119 | . . . . . . . . . . 11 |
54 | 50, 53 | anim12i 336 | . . . . . . . . . 10 |
55 | 54 | reximi 2563 | . . . . . . . . 9 |
56 | 41, 55 | sylbi 120 | . . . . . . . 8 |
57 | ssrexv 3207 | . . . . . . . 8 | |
58 | 34, 56, 57 | mpsyl 65 | . . . . . . 7 |
59 | 58 | adantl 275 | . . . . . 6 |
60 | 59 | bj-charfunr 13692 | . . . . 5 DECID |
61 | 60 | ex 114 | . . . 4 DECID |
62 | eleq1w 2227 | . . . . . . 7 | |
63 | 62 | notbid 657 | . . . . . 6 |
64 | 63 | dcbid 828 | . . . . 5 DECID DECID |
65 | 64 | cbvralvw 2696 | . . . 4 DECID DECID |
66 | 61, 65 | syl6ibr 161 | . . 3 DECID |
67 | bj-charfunbi.st | . . . . . 6 STAB | |
68 | 67 | r19.21bi 2554 | . . . . 5 STAB |
69 | stdcn 837 | . . . . 5 STAB DECID DECID | |
70 | 68, 69 | sylib 121 | . . . 4 DECID DECID |
71 | 70 | ralimdva 2533 | . . 3 DECID DECID |
72 | 66, 71 | syld 45 | . 2 DECID |
73 | 30, 72 | impbid 128 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 STAB wstab 820 DECID wdc 824 wceq 1343 wcel 2136 wne 2336 wral 2444 wrex 2445 cvv 2726 cdif 3113 cin 3115 wss 3116 c0 3409 cif 3520 cmpt 4043 con0 4341 com 4567 wf 5184 cfv 5188 (class class class)co 5842 c1o 6377 c2o 6378 cmap 6614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1o 6384 df-2o 6385 df-map 6616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |