| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-charfunbi | Unicode version | ||
| Description: In an ambient set
This characterization can be applied to singletons when the set |
| Ref | Expression |
|---|---|
| bj-charfunbi.ex |
|
| bj-charfunbi.st |
|
| Ref | Expression |
|---|---|
| bj-charfunbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2290 |
. . . . 5
| |
| 2 | 1 | dcbid 843 |
. . . 4
|
| 3 | 2 | cbvralvw 2769 |
. . 3
|
| 4 | eleq1w 2290 |
. . . . . . . . . . . 12
| |
| 5 | 4 | ifbid 3624 |
. . . . . . . . . . 11
|
| 6 | 5 | cbvmptv 4180 |
. . . . . . . . . 10
|
| 7 | 6 | a1i 9 |
. . . . . . . . 9
|
| 8 | 3 | biimpri 133 |
. . . . . . . . . 10
|
| 9 | 8 | adantl 277 |
. . . . . . . . 9
|
| 10 | 7, 9 | bj-charfundc 16171 |
. . . . . . . 8
|
| 11 | 10 | ex 115 |
. . . . . . 7
|
| 12 | 2on 6571 |
. . . . . . . . . . 11
| |
| 13 | 12 | a1i 9 |
. . . . . . . . . 10
|
| 14 | bj-charfunbi.ex |
. . . . . . . . . 10
| |
| 15 | 13, 14 | elmapd 6809 |
. . . . . . . . 9
|
| 16 | 15 | biimprd 158 |
. . . . . . . 8
|
| 17 | 16 | adantrd 279 |
. . . . . . 7
|
| 18 | 11, 17 | syld 45 |
. . . . . 6
|
| 19 | 18 | imp 124 |
. . . . 5
|
| 20 | fveq1 5626 |
. . . . . . . . 9
| |
| 21 | 20 | eqeq1d 2238 |
. . . . . . . 8
|
| 22 | 21 | ralbidv 2530 |
. . . . . . 7
|
| 23 | 20 | eqeq1d 2238 |
. . . . . . . 8
|
| 24 | 23 | ralbidv 2530 |
. . . . . . 7
|
| 25 | 22, 24 | anbi12d 473 |
. . . . . 6
|
| 26 | 25 | adantl 277 |
. . . . 5
|
| 27 | 10 | simprd 114 |
. . . . 5
|
| 28 | 19, 26, 27 | rspcedvd 2913 |
. . . 4
|
| 29 | 28 | ex 115 |
. . 3
|
| 30 | 3, 29 | biimtrid 152 |
. 2
|
| 31 | omex 4685 |
. . . . . . . . 9
| |
| 32 | 2ssom 6670 |
. . . . . . . . 9
| |
| 33 | mapss 6838 |
. . . . . . . . 9
| |
| 34 | 31, 32, 33 | mp2an 426 |
. . . . . . . 8
|
| 35 | fveq1 5626 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | eqeq1d 2238 |
. . . . . . . . . . . 12
|
| 37 | 36 | ralbidv 2530 |
. . . . . . . . . . 11
|
| 38 | 35 | eqeq1d 2238 |
. . . . . . . . . . . 12
|
| 39 | 38 | ralbidv 2530 |
. . . . . . . . . . 11
|
| 40 | 37, 39 | anbi12d 473 |
. . . . . . . . . 10
|
| 41 | 40 | cbvrexvw 2770 |
. . . . . . . . 9
|
| 42 | fveqeq2 5636 |
. . . . . . . . . . . . 13
| |
| 43 | 42 | cbvralvw 2769 |
. . . . . . . . . . . 12
|
| 44 | 1n0 6578 |
. . . . . . . . . . . . . . . 16
| |
| 45 | 44 | neii 2402 |
. . . . . . . . . . . . . . 15
|
| 46 | eqeq1 2236 |
. . . . . . . . . . . . . . 15
| |
| 47 | 45, 46 | mtbiri 679 |
. . . . . . . . . . . . . 14
|
| 48 | 47 | neqned 2407 |
. . . . . . . . . . . . 13
|
| 49 | 48 | ralimi 2593 |
. . . . . . . . . . . 12
|
| 50 | 43, 49 | sylbi 121 |
. . . . . . . . . . 11
|
| 51 | fveqeq2 5636 |
. . . . . . . . . . . . 13
| |
| 52 | 51 | cbvralvw 2769 |
. . . . . . . . . . . 12
|
| 53 | 52 | biimpi 120 |
. . . . . . . . . . 11
|
| 54 | 50, 53 | anim12i 338 |
. . . . . . . . . 10
|
| 55 | 54 | reximi 2627 |
. . . . . . . . 9
|
| 56 | 41, 55 | sylbi 121 |
. . . . . . . 8
|
| 57 | ssrexv 3289 |
. . . . . . . 8
| |
| 58 | 34, 56, 57 | mpsyl 65 |
. . . . . . 7
|
| 59 | 58 | adantl 277 |
. . . . . 6
|
| 60 | 59 | bj-charfunr 16173 |
. . . . 5
|
| 61 | 60 | ex 115 |
. . . 4
|
| 62 | eleq1w 2290 |
. . . . . . 7
| |
| 63 | 62 | notbid 671 |
. . . . . 6
|
| 64 | 63 | dcbid 843 |
. . . . 5
|
| 65 | 64 | cbvralvw 2769 |
. . . 4
|
| 66 | 61, 65 | imbitrrdi 162 |
. . 3
|
| 67 | bj-charfunbi.st |
. . . . . 6
| |
| 68 | 67 | r19.21bi 2618 |
. . . . 5
|
| 69 | stdcn 852 |
. . . . 5
| |
| 70 | 68, 69 | sylib 122 |
. . . 4
|
| 71 | 70 | ralimdva 2597 |
. . 3
|
| 72 | 66, 71 | syld 45 |
. 2
|
| 73 | 30, 72 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1o 6562 df-2o 6563 df-map 6797 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |