Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfunbi Unicode version

Theorem bj-charfunbi 13428
Description: In an ambient set  X, if membership in  A is stable, then it is decidable if and only if  A has a characteristic function.

This characterization can be applied to singletons when the set  X has stable equality, which is the case as soon as it has a tight apartness relation. (Contributed by BJ, 6-Aug-2024.)

Hypotheses
Ref Expression
bj-charfunbi.ex  |-  ( ph  ->  X  e.  V )
bj-charfunbi.st  |-  ( ph  ->  A. x  e.  X STAB  x  e.  A )
Assertion
Ref Expression
bj-charfunbi  |-  ( ph  ->  ( A. x  e.  X DECID  x  e.  A  <->  E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) ) ) )
Distinct variable groups:    A, f, x   
f, X, x    ph, f, x
Allowed substitution hints:    V( x, f)

Proof of Theorem bj-charfunbi
Dummy variables  g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2218 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
21dcbid 824 . . . 4  |-  ( x  =  z  ->  (DECID  x  e.  A  <-> DECID  z  e.  A )
)
32cbvralvw 2684 . . 3  |-  ( A. x  e.  X DECID  x  e.  A 
<-> 
A. z  e.  X DECID  z  e.  A )
4 eleq1w 2218 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
z  e.  A  <->  x  e.  A ) )
54ifbid 3526 . . . . . . . . . . 11  |-  ( z  =  x  ->  if ( z  e.  A ,  1o ,  (/) )  =  if ( x  e.  A ,  1o ,  (/) ) )
65cbvmptv 4061 . . . . . . . . . 10  |-  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) )
76a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  A. z  e.  X DECID  z  e.  A
)  ->  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
83biimpri 132 . . . . . . . . . 10  |-  ( A. z  e.  X DECID  z  e.  A  ->  A. x  e.  X DECID  x  e.  A )
98adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  A. z  e.  X DECID  z  e.  A
)  ->  A. x  e.  X DECID  x  e.  A
)
107, 9bj-charfundc 13425 . . . . . . . 8  |-  ( (
ph  /\  A. z  e.  X DECID  z  e.  A
)  ->  ( (
z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) : X --> 2o  /\  ( A. x  e.  ( X  i^i  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x )  =  (/) ) ) )
1110ex 114 . . . . . . 7  |-  ( ph  ->  ( A. z  e.  X DECID  z  e.  A  -> 
( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) : X --> 2o  /\  ( A. x  e.  ( X  i^i  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x
)  =  (/) ) ) ) )
12 2on 6373 . . . . . . . . . . 11  |-  2o  e.  On
1312a1i 9 . . . . . . . . . 10  |-  ( ph  ->  2o  e.  On )
14 bj-charfunbi.ex . . . . . . . . . 10  |-  ( ph  ->  X  e.  V )
1513, 14elmapd 6608 . . . . . . . . 9  |-  ( ph  ->  ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  e.  ( 2o  ^m  X
)  <->  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) : X --> 2o ) )
1615biimprd 157 . . . . . . . 8  |-  ( ph  ->  ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) : X --> 2o  ->  (
z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  e.  ( 2o  ^m  X ) ) )
1716adantrd 277 . . . . . . 7  |-  ( ph  ->  ( ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) : X --> 2o  /\  ( A. x  e.  ( X  i^i  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x )  =  (/) ) )  ->  (
z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  e.  ( 2o  ^m  X ) ) )
1811, 17syld 45 . . . . . 6  |-  ( ph  ->  ( A. z  e.  X DECID  z  e.  A  -> 
( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  e.  ( 2o  ^m  X ) ) )
1918imp 123 . . . . 5  |-  ( (
ph  /\  A. z  e.  X DECID  z  e.  A
)  ->  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  e.  ( 2o  ^m  X ) )
20 fveq1 5468 . . . . . . . . 9  |-  ( f  =  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  -> 
( f `  x
)  =  ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x ) )
2120eqeq1d 2166 . . . . . . . 8  |-  ( f  =  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  -> 
( ( f `  x )  =  1o  <->  ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x
)  =  1o ) )
2221ralbidv 2457 . . . . . . 7  |-  ( f  =  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  -> 
( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o  <->  A. x  e.  ( X  i^i  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x
)  =  1o ) )
2320eqeq1d 2166 . . . . . . . 8  |-  ( f  =  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  -> 
( ( f `  x )  =  (/)  <->  (
( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x
)  =  (/) ) )
2423ralbidv 2457 . . . . . . 7  |-  ( f  =  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  -> 
( A. x  e.  ( X  \  A
) ( f `  x )  =  (/)  <->  A. x  e.  ( X  \  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x )  =  (/) ) )
2522, 24anbi12d 465 . . . . . 6  |-  ( f  =  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  -> 
( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) )  <->  ( A. x  e.  ( X  i^i  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x )  =  1o  /\  A. x  e.  ( X  \  A
) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x )  =  (/) ) ) )
2625adantl 275 . . . . 5  |-  ( ( ( ph  /\  A. z  e.  X DECID  z  e.  A )  /\  f  =  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) )  ->  ( ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =  1o  /\  A. x  e.  ( X  \  A
) ( f `  x )  =  (/) ) 
<->  ( A. x  e.  ( X  i^i  A
) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x )  =  1o  /\  A. x  e.  ( X  \  A
) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x )  =  (/) ) ) )
2710simprd 113 . . . . 5  |-  ( (
ph  /\  A. z  e.  X DECID  z  e.  A
)  ->  ( A. x  e.  ( X  i^i  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x )  =  1o  /\  A. x  e.  ( X  \  A
) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x )  =  (/) ) )
2819, 26, 27rspcedvd 2822 . . . 4  |-  ( (
ph  /\  A. z  e.  X DECID  z  e.  A
)  ->  E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) ) )
2928ex 114 . . 3  |-  ( ph  ->  ( A. z  e.  X DECID  z  e.  A  ->  E. f  e.  ( 2o  ^m  X ) ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( f `  x )  =  (/) ) ) )
303, 29syl5bi 151 . 2  |-  ( ph  ->  ( A. x  e.  X DECID  x  e.  A  ->  E. f  e.  ( 2o  ^m  X ) ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( f `  x )  =  (/) ) ) )
31 omex 4553 . . . . . . . . 9  |-  om  e.  _V
32 2ssom 13419 . . . . . . . . 9  |-  2o  C_  om
33 mapss 6637 . . . . . . . . 9  |-  ( ( om  e.  _V  /\  2o  C_  om )  -> 
( 2o  ^m  X
)  C_  ( om  ^m  X ) )
3431, 32, 33mp2an 423 . . . . . . . 8  |-  ( 2o 
^m  X )  C_  ( om  ^m  X )
35 fveq1 5468 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  (
f `  x )  =  ( g `  x ) )
3635eqeq1d 2166 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( f `  x
)  =  1o  <->  ( g `  x )  =  1o ) )
3736ralbidv 2457 . . . . . . . . . . 11  |-  ( f  =  g  ->  ( A. x  e.  ( X  i^i  A ) ( f `  x )  =  1o  <->  A. x  e.  ( X  i^i  A
) ( g `  x )  =  1o ) )
3835eqeq1d 2166 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( f `  x
)  =  (/)  <->  ( g `  x )  =  (/) ) )
3938ralbidv 2457 . . . . . . . . . . 11  |-  ( f  =  g  ->  ( A. x  e.  ( X  \  A ) ( f `  x )  =  (/)  <->  A. x  e.  ( X  \  A ) ( g `  x
)  =  (/) ) )
4037, 39anbi12d 465 . . . . . . . . . 10  |-  ( f  =  g  ->  (
( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) )  <->  ( A. x  e.  ( X  i^i  A ) ( g `
 x )  =  1o  /\  A. x  e.  ( X  \  A
) ( g `  x )  =  (/) ) ) )
4140cbvrexvw 2685 . . . . . . . . 9  |-  ( E. f  e.  ( 2o 
^m  X ) ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( f `  x )  =  (/) )  <->  E. g  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( g `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( g `  x
)  =  (/) ) )
42 fveqeq2 5478 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( g `  x
)  =  1o  <->  ( g `  y )  =  1o ) )
4342cbvralvw 2684 . . . . . . . . . . . 12  |-  ( A. x  e.  ( X  i^i  A ) ( g `
 x )  =  1o  <->  A. y  e.  ( X  i^i  A ) ( g `  y
)  =  1o )
44 1n0 6380 . . . . . . . . . . . . . . . 16  |-  1o  =/=  (/)
4544neii 2329 . . . . . . . . . . . . . . 15  |-  -.  1o  =  (/)
46 eqeq1 2164 . . . . . . . . . . . . . . 15  |-  ( ( g `  y )  =  1o  ->  (
( g `  y
)  =  (/)  <->  1o  =  (/) ) )
4745, 46mtbiri 665 . . . . . . . . . . . . . 14  |-  ( ( g `  y )  =  1o  ->  -.  ( g `  y
)  =  (/) )
4847neqned 2334 . . . . . . . . . . . . 13  |-  ( ( g `  y )  =  1o  ->  (
g `  y )  =/=  (/) )
4948ralimi 2520 . . . . . . . . . . . 12  |-  ( A. y  e.  ( X  i^i  A ) ( g `
 y )  =  1o  ->  A. y  e.  ( X  i^i  A
) ( g `  y )  =/=  (/) )
5043, 49sylbi 120 . . . . . . . . . . 11  |-  ( A. x  e.  ( X  i^i  A ) ( g `
 x )  =  1o  ->  A. y  e.  ( X  i^i  A
) ( g `  y )  =/=  (/) )
51 fveqeq2 5478 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( g `  x
)  =  (/)  <->  ( g `  y )  =  (/) ) )
5251cbvralvw 2684 . . . . . . . . . . . 12  |-  ( A. x  e.  ( X  \  A ) ( g `
 x )  =  (/) 
<-> 
A. y  e.  ( X  \  A ) ( g `  y
)  =  (/) )
5352biimpi 119 . . . . . . . . . . 11  |-  ( A. x  e.  ( X  \  A ) ( g `
 x )  =  (/)  ->  A. y  e.  ( X  \  A ) ( g `  y
)  =  (/) )
5450, 53anim12i 336 . . . . . . . . . 10  |-  ( ( A. x  e.  ( X  i^i  A ) ( g `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( g `  x )  =  (/) )  ->  ( A. y  e.  ( X  i^i  A ) ( g `  y )  =/=  (/)  /\  A. y  e.  ( X  \  A
) ( g `  y )  =  (/) ) )
5554reximi 2554 . . . . . . . . 9  |-  ( E. g  e.  ( 2o 
^m  X ) ( A. x  e.  ( X  i^i  A ) ( g `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( g `  x )  =  (/) )  ->  E. g  e.  ( 2o  ^m  X
) ( A. y  e.  ( X  i^i  A
) ( g `  y )  =/=  (/)  /\  A. y  e.  ( X  \  A ) ( g `
 y )  =  (/) ) )
5641, 55sylbi 120 . . . . . . . 8  |-  ( E. f  e.  ( 2o 
^m  X ) ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( f `  x )  =  (/) )  ->  E. g  e.  ( 2o  ^m  X
) ( A. y  e.  ( X  i^i  A
) ( g `  y )  =/=  (/)  /\  A. y  e.  ( X  \  A ) ( g `
 y )  =  (/) ) )
57 ssrexv 3193 . . . . . . . 8  |-  ( ( 2o  ^m  X ) 
C_  ( om  ^m  X )  ->  ( E. g  e.  ( 2o  ^m  X ) ( A. y  e.  ( X  i^i  A ) ( g `  y
)  =/=  (/)  /\  A. y  e.  ( X  \  A ) ( g `
 y )  =  (/) )  ->  E. g  e.  ( om  ^m  X
) ( A. y  e.  ( X  i^i  A
) ( g `  y )  =/=  (/)  /\  A. y  e.  ( X  \  A ) ( g `
 y )  =  (/) ) ) )
5834, 56, 57mpsyl 65 . . . . . . 7  |-  ( E. f  e.  ( 2o 
^m  X ) ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( f `  x )  =  (/) )  ->  E. g  e.  ( om  ^m  X
) ( A. y  e.  ( X  i^i  A
) ( g `  y )  =/=  (/)  /\  A. y  e.  ( X  \  A ) ( g `
 y )  =  (/) ) )
5958adantl 275 . . . . . 6  |-  ( (
ph  /\  E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) ) )  ->  E. g  e.  ( om  ^m  X ) ( A. y  e.  ( X  i^i  A
) ( g `  y )  =/=  (/)  /\  A. y  e.  ( X  \  A ) ( g `
 y )  =  (/) ) )
6059bj-charfunr 13427 . . . . 5  |-  ( (
ph  /\  E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) ) )  ->  A. y  e.  X DECID  -.  y  e.  A )
6160ex 114 . . . 4  |-  ( ph  ->  ( E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) )  ->  A. y  e.  X DECID  -.  y  e.  A )
)
62 eleq1w 2218 . . . . . . 7  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
6362notbid 657 . . . . . 6  |-  ( x  =  y  ->  ( -.  x  e.  A  <->  -.  y  e.  A ) )
6463dcbid 824 . . . . 5  |-  ( x  =  y  ->  (DECID  -.  x  e.  A  <-> DECID  -.  y  e.  A
) )
6564cbvralvw 2684 . . . 4  |-  ( A. x  e.  X DECID  -.  x  e.  A  <->  A. y  e.  X DECID  -.  y  e.  A )
6661, 65syl6ibr 161 . . 3  |-  ( ph  ->  ( E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) )  ->  A. x  e.  X DECID  -.  x  e.  A )
)
67 bj-charfunbi.st . . . . . 6  |-  ( ph  ->  A. x  e.  X STAB  x  e.  A )
6867r19.21bi 2545 . . . . 5  |-  ( (
ph  /\  x  e.  X )  -> STAB  x  e.  A )
69 stdcn 833 . . . . 5  |-  (STAB  x  e.  A  <->  (DECID  -.  x  e.  A  -> DECID  x  e.  A ) )
7068, 69sylib 121 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (DECID  -.  x  e.  A  -> DECID  x  e.  A ) )
7170ralimdva 2524 . . 3  |-  ( ph  ->  ( A. x  e.  X DECID 
-.  x  e.  A  ->  A. x  e.  X DECID  x  e.  A ) )
7266, 71syld 45 . 2  |-  ( ph  ->  ( E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) )  ->  A. x  e.  X DECID  x  e.  A ) )
7330, 72impbid 128 1  |-  ( ph  ->  ( A. x  e.  X DECID  x  e.  A  <->  E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  STAB wstab 816  DECID wdc 820    = wceq 1335    e. wcel 2128    =/= wne 2327   A.wral 2435   E.wrex 2436   _Vcvv 2712    \ cdif 3099    i^i cin 3101    C_ wss 3102   (/)c0 3394   ifcif 3505    |-> cmpt 4026   Oncon0 4324   omcom 4550   -->wf 5167   ` cfv 5171  (class class class)co 5825   1oc1o 6357   2oc2o 6358    ^m cmap 6594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-iord 4327  df-on 4329  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-fv 5179  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1o 6364  df-2o 6365  df-map 6596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator