| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-charfunbi | Unicode version | ||
| Description: In an ambient set
This characterization can be applied to singletons when the set |
| Ref | Expression |
|---|---|
| bj-charfunbi.ex |
|
| bj-charfunbi.st |
|
| Ref | Expression |
|---|---|
| bj-charfunbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2257 |
. . . . 5
| |
| 2 | 1 | dcbid 839 |
. . . 4
|
| 3 | 2 | cbvralvw 2733 |
. . 3
|
| 4 | eleq1w 2257 |
. . . . . . . . . . . 12
| |
| 5 | 4 | ifbid 3582 |
. . . . . . . . . . 11
|
| 6 | 5 | cbvmptv 4129 |
. . . . . . . . . 10
|
| 7 | 6 | a1i 9 |
. . . . . . . . 9
|
| 8 | 3 | biimpri 133 |
. . . . . . . . . 10
|
| 9 | 8 | adantl 277 |
. . . . . . . . 9
|
| 10 | 7, 9 | bj-charfundc 15454 |
. . . . . . . 8
|
| 11 | 10 | ex 115 |
. . . . . . 7
|
| 12 | 2on 6483 |
. . . . . . . . . . 11
| |
| 13 | 12 | a1i 9 |
. . . . . . . . . 10
|
| 14 | bj-charfunbi.ex |
. . . . . . . . . 10
| |
| 15 | 13, 14 | elmapd 6721 |
. . . . . . . . 9
|
| 16 | 15 | biimprd 158 |
. . . . . . . 8
|
| 17 | 16 | adantrd 279 |
. . . . . . 7
|
| 18 | 11, 17 | syld 45 |
. . . . . 6
|
| 19 | 18 | imp 124 |
. . . . 5
|
| 20 | fveq1 5557 |
. . . . . . . . 9
| |
| 21 | 20 | eqeq1d 2205 |
. . . . . . . 8
|
| 22 | 21 | ralbidv 2497 |
. . . . . . 7
|
| 23 | 20 | eqeq1d 2205 |
. . . . . . . 8
|
| 24 | 23 | ralbidv 2497 |
. . . . . . 7
|
| 25 | 22, 24 | anbi12d 473 |
. . . . . 6
|
| 26 | 25 | adantl 277 |
. . . . 5
|
| 27 | 10 | simprd 114 |
. . . . 5
|
| 28 | 19, 26, 27 | rspcedvd 2874 |
. . . 4
|
| 29 | 28 | ex 115 |
. . 3
|
| 30 | 3, 29 | biimtrid 152 |
. 2
|
| 31 | omex 4629 |
. . . . . . . . 9
| |
| 32 | 2ssom 6582 |
. . . . . . . . 9
| |
| 33 | mapss 6750 |
. . . . . . . . 9
| |
| 34 | 31, 32, 33 | mp2an 426 |
. . . . . . . 8
|
| 35 | fveq1 5557 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | eqeq1d 2205 |
. . . . . . . . . . . 12
|
| 37 | 36 | ralbidv 2497 |
. . . . . . . . . . 11
|
| 38 | 35 | eqeq1d 2205 |
. . . . . . . . . . . 12
|
| 39 | 38 | ralbidv 2497 |
. . . . . . . . . . 11
|
| 40 | 37, 39 | anbi12d 473 |
. . . . . . . . . 10
|
| 41 | 40 | cbvrexvw 2734 |
. . . . . . . . 9
|
| 42 | fveqeq2 5567 |
. . . . . . . . . . . . 13
| |
| 43 | 42 | cbvralvw 2733 |
. . . . . . . . . . . 12
|
| 44 | 1n0 6490 |
. . . . . . . . . . . . . . . 16
| |
| 45 | 44 | neii 2369 |
. . . . . . . . . . . . . . 15
|
| 46 | eqeq1 2203 |
. . . . . . . . . . . . . . 15
| |
| 47 | 45, 46 | mtbiri 676 |
. . . . . . . . . . . . . 14
|
| 48 | 47 | neqned 2374 |
. . . . . . . . . . . . 13
|
| 49 | 48 | ralimi 2560 |
. . . . . . . . . . . 12
|
| 50 | 43, 49 | sylbi 121 |
. . . . . . . . . . 11
|
| 51 | fveqeq2 5567 |
. . . . . . . . . . . . 13
| |
| 52 | 51 | cbvralvw 2733 |
. . . . . . . . . . . 12
|
| 53 | 52 | biimpi 120 |
. . . . . . . . . . 11
|
| 54 | 50, 53 | anim12i 338 |
. . . . . . . . . 10
|
| 55 | 54 | reximi 2594 |
. . . . . . . . 9
|
| 56 | 41, 55 | sylbi 121 |
. . . . . . . 8
|
| 57 | ssrexv 3248 |
. . . . . . . 8
| |
| 58 | 34, 56, 57 | mpsyl 65 |
. . . . . . 7
|
| 59 | 58 | adantl 277 |
. . . . . 6
|
| 60 | 59 | bj-charfunr 15456 |
. . . . 5
|
| 61 | 60 | ex 115 |
. . . 4
|
| 62 | eleq1w 2257 |
. . . . . . 7
| |
| 63 | 62 | notbid 668 |
. . . . . 6
|
| 64 | 63 | dcbid 839 |
. . . . 5
|
| 65 | 64 | cbvralvw 2733 |
. . . 4
|
| 66 | 61, 65 | imbitrrdi 162 |
. . 3
|
| 67 | bj-charfunbi.st |
. . . . . 6
| |
| 68 | 67 | r19.21bi 2585 |
. . . . 5
|
| 69 | stdcn 848 |
. . . . 5
| |
| 70 | 68, 69 | sylib 122 |
. . . 4
|
| 71 | 70 | ralimdva 2564 |
. . 3
|
| 72 | 66, 71 | syld 45 |
. 2
|
| 73 | 30, 72 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1o 6474 df-2o 6475 df-map 6709 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |