| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-charfunbi | Unicode version | ||
| Description: In an ambient set
This characterization can be applied to singletons when the set |
| Ref | Expression |
|---|---|
| bj-charfunbi.ex |
|
| bj-charfunbi.st |
|
| Ref | Expression |
|---|---|
| bj-charfunbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2266 |
. . . . 5
| |
| 2 | 1 | dcbid 840 |
. . . 4
|
| 3 | 2 | cbvralvw 2742 |
. . 3
|
| 4 | eleq1w 2266 |
. . . . . . . . . . . 12
| |
| 5 | 4 | ifbid 3592 |
. . . . . . . . . . 11
|
| 6 | 5 | cbvmptv 4140 |
. . . . . . . . . 10
|
| 7 | 6 | a1i 9 |
. . . . . . . . 9
|
| 8 | 3 | biimpri 133 |
. . . . . . . . . 10
|
| 9 | 8 | adantl 277 |
. . . . . . . . 9
|
| 10 | 7, 9 | bj-charfundc 15744 |
. . . . . . . 8
|
| 11 | 10 | ex 115 |
. . . . . . 7
|
| 12 | 2on 6511 |
. . . . . . . . . . 11
| |
| 13 | 12 | a1i 9 |
. . . . . . . . . 10
|
| 14 | bj-charfunbi.ex |
. . . . . . . . . 10
| |
| 15 | 13, 14 | elmapd 6749 |
. . . . . . . . 9
|
| 16 | 15 | biimprd 158 |
. . . . . . . 8
|
| 17 | 16 | adantrd 279 |
. . . . . . 7
|
| 18 | 11, 17 | syld 45 |
. . . . . 6
|
| 19 | 18 | imp 124 |
. . . . 5
|
| 20 | fveq1 5575 |
. . . . . . . . 9
| |
| 21 | 20 | eqeq1d 2214 |
. . . . . . . 8
|
| 22 | 21 | ralbidv 2506 |
. . . . . . 7
|
| 23 | 20 | eqeq1d 2214 |
. . . . . . . 8
|
| 24 | 23 | ralbidv 2506 |
. . . . . . 7
|
| 25 | 22, 24 | anbi12d 473 |
. . . . . 6
|
| 26 | 25 | adantl 277 |
. . . . 5
|
| 27 | 10 | simprd 114 |
. . . . 5
|
| 28 | 19, 26, 27 | rspcedvd 2883 |
. . . 4
|
| 29 | 28 | ex 115 |
. . 3
|
| 30 | 3, 29 | biimtrid 152 |
. 2
|
| 31 | omex 4641 |
. . . . . . . . 9
| |
| 32 | 2ssom 6610 |
. . . . . . . . 9
| |
| 33 | mapss 6778 |
. . . . . . . . 9
| |
| 34 | 31, 32, 33 | mp2an 426 |
. . . . . . . 8
|
| 35 | fveq1 5575 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | eqeq1d 2214 |
. . . . . . . . . . . 12
|
| 37 | 36 | ralbidv 2506 |
. . . . . . . . . . 11
|
| 38 | 35 | eqeq1d 2214 |
. . . . . . . . . . . 12
|
| 39 | 38 | ralbidv 2506 |
. . . . . . . . . . 11
|
| 40 | 37, 39 | anbi12d 473 |
. . . . . . . . . 10
|
| 41 | 40 | cbvrexvw 2743 |
. . . . . . . . 9
|
| 42 | fveqeq2 5585 |
. . . . . . . . . . . . 13
| |
| 43 | 42 | cbvralvw 2742 |
. . . . . . . . . . . 12
|
| 44 | 1n0 6518 |
. . . . . . . . . . . . . . . 16
| |
| 45 | 44 | neii 2378 |
. . . . . . . . . . . . . . 15
|
| 46 | eqeq1 2212 |
. . . . . . . . . . . . . . 15
| |
| 47 | 45, 46 | mtbiri 677 |
. . . . . . . . . . . . . 14
|
| 48 | 47 | neqned 2383 |
. . . . . . . . . . . . 13
|
| 49 | 48 | ralimi 2569 |
. . . . . . . . . . . 12
|
| 50 | 43, 49 | sylbi 121 |
. . . . . . . . . . 11
|
| 51 | fveqeq2 5585 |
. . . . . . . . . . . . 13
| |
| 52 | 51 | cbvralvw 2742 |
. . . . . . . . . . . 12
|
| 53 | 52 | biimpi 120 |
. . . . . . . . . . 11
|
| 54 | 50, 53 | anim12i 338 |
. . . . . . . . . 10
|
| 55 | 54 | reximi 2603 |
. . . . . . . . 9
|
| 56 | 41, 55 | sylbi 121 |
. . . . . . . 8
|
| 57 | ssrexv 3258 |
. . . . . . . 8
| |
| 58 | 34, 56, 57 | mpsyl 65 |
. . . . . . 7
|
| 59 | 58 | adantl 277 |
. . . . . 6
|
| 60 | 59 | bj-charfunr 15746 |
. . . . 5
|
| 61 | 60 | ex 115 |
. . . 4
|
| 62 | eleq1w 2266 |
. . . . . . 7
| |
| 63 | 62 | notbid 669 |
. . . . . 6
|
| 64 | 63 | dcbid 840 |
. . . . 5
|
| 65 | 64 | cbvralvw 2742 |
. . . 4
|
| 66 | 61, 65 | imbitrrdi 162 |
. . 3
|
| 67 | bj-charfunbi.st |
. . . . . 6
| |
| 68 | 67 | r19.21bi 2594 |
. . . . 5
|
| 69 | stdcn 849 |
. . . . 5
| |
| 70 | 68, 69 | sylib 122 |
. . . 4
|
| 71 | 70 | ralimdva 2573 |
. . 3
|
| 72 | 66, 71 | syld 45 |
. 2
|
| 73 | 30, 72 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1o 6502 df-2o 6503 df-map 6737 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |