Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfunbi Unicode version

Theorem bj-charfunbi 14219
Description: In an ambient set  X, if membership in  A is stable, then it is decidable if and only if  A has a characteristic function.

This characterization can be applied to singletons when the set  X has stable equality, which is the case as soon as it has a tight apartness relation. (Contributed by BJ, 6-Aug-2024.)

Hypotheses
Ref Expression
bj-charfunbi.ex  |-  ( ph  ->  X  e.  V )
bj-charfunbi.st  |-  ( ph  ->  A. x  e.  X STAB  x  e.  A )
Assertion
Ref Expression
bj-charfunbi  |-  ( ph  ->  ( A. x  e.  X DECID  x  e.  A  <->  E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) ) ) )
Distinct variable groups:    A, f, x   
f, X, x    ph, f, x
Allowed substitution hints:    V( x, f)

Proof of Theorem bj-charfunbi
Dummy variables  g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2238 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
21dcbid 838 . . . 4  |-  ( x  =  z  ->  (DECID  x  e.  A  <-> DECID  z  e.  A )
)
32cbvralvw 2707 . . 3  |-  ( A. x  e.  X DECID  x  e.  A 
<-> 
A. z  e.  X DECID  z  e.  A )
4 eleq1w 2238 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
z  e.  A  <->  x  e.  A ) )
54ifbid 3555 . . . . . . . . . . 11  |-  ( z  =  x  ->  if ( z  e.  A ,  1o ,  (/) )  =  if ( x  e.  A ,  1o ,  (/) ) )
65cbvmptv 4096 . . . . . . . . . 10  |-  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) )
76a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  A. z  e.  X DECID  z  e.  A
)  ->  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
83biimpri 133 . . . . . . . . . 10  |-  ( A. z  e.  X DECID  z  e.  A  ->  A. x  e.  X DECID  x  e.  A )
98adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  A. z  e.  X DECID  z  e.  A
)  ->  A. x  e.  X DECID  x  e.  A
)
107, 9bj-charfundc 14216 . . . . . . . 8  |-  ( (
ph  /\  A. z  e.  X DECID  z  e.  A
)  ->  ( (
z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) : X --> 2o  /\  ( A. x  e.  ( X  i^i  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x )  =  (/) ) ) )
1110ex 115 . . . . . . 7  |-  ( ph  ->  ( A. z  e.  X DECID  z  e.  A  -> 
( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) : X --> 2o  /\  ( A. x  e.  ( X  i^i  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x
)  =  (/) ) ) ) )
12 2on 6420 . . . . . . . . . . 11  |-  2o  e.  On
1312a1i 9 . . . . . . . . . 10  |-  ( ph  ->  2o  e.  On )
14 bj-charfunbi.ex . . . . . . . . . 10  |-  ( ph  ->  X  e.  V )
1513, 14elmapd 6656 . . . . . . . . 9  |-  ( ph  ->  ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  e.  ( 2o  ^m  X
)  <->  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) : X --> 2o ) )
1615biimprd 158 . . . . . . . 8  |-  ( ph  ->  ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) : X --> 2o  ->  (
z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  e.  ( 2o  ^m  X ) ) )
1716adantrd 279 . . . . . . 7  |-  ( ph  ->  ( ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) : X --> 2o  /\  ( A. x  e.  ( X  i^i  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x )  =  (/) ) )  ->  (
z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  e.  ( 2o  ^m  X ) ) )
1811, 17syld 45 . . . . . 6  |-  ( ph  ->  ( A. z  e.  X DECID  z  e.  A  -> 
( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  e.  ( 2o  ^m  X ) ) )
1918imp 124 . . . . 5  |-  ( (
ph  /\  A. z  e.  X DECID  z  e.  A
)  ->  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  e.  ( 2o  ^m  X ) )
20 fveq1 5510 . . . . . . . . 9  |-  ( f  =  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  -> 
( f `  x
)  =  ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x ) )
2120eqeq1d 2186 . . . . . . . 8  |-  ( f  =  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  -> 
( ( f `  x )  =  1o  <->  ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x
)  =  1o ) )
2221ralbidv 2477 . . . . . . 7  |-  ( f  =  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  -> 
( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o  <->  A. x  e.  ( X  i^i  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x
)  =  1o ) )
2320eqeq1d 2186 . . . . . . . 8  |-  ( f  =  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  -> 
( ( f `  x )  =  (/)  <->  (
( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `  x
)  =  (/) ) )
2423ralbidv 2477 . . . . . . 7  |-  ( f  =  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  -> 
( A. x  e.  ( X  \  A
) ( f `  x )  =  (/)  <->  A. x  e.  ( X  \  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x )  =  (/) ) )
2522, 24anbi12d 473 . . . . . 6  |-  ( f  =  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) )  -> 
( ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) )  <->  ( A. x  e.  ( X  i^i  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x )  =  1o  /\  A. x  e.  ( X  \  A
) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x )  =  (/) ) ) )
2625adantl 277 . . . . 5  |-  ( ( ( ph  /\  A. z  e.  X DECID  z  e.  A )  /\  f  =  ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) )  ->  ( ( A. x  e.  ( X  i^i  A ) ( f `
 x )  =  1o  /\  A. x  e.  ( X  \  A
) ( f `  x )  =  (/) ) 
<->  ( A. x  e.  ( X  i^i  A
) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x )  =  1o  /\  A. x  e.  ( X  \  A
) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x )  =  (/) ) ) )
2710simprd 114 . . . . 5  |-  ( (
ph  /\  A. z  e.  X DECID  z  e.  A
)  ->  ( A. x  e.  ( X  i^i  A ) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x )  =  1o  /\  A. x  e.  ( X  \  A
) ( ( z  e.  X  |->  if ( z  e.  A ,  1o ,  (/) ) ) `
 x )  =  (/) ) )
2819, 26, 27rspcedvd 2847 . . . 4  |-  ( (
ph  /\  A. z  e.  X DECID  z  e.  A
)  ->  E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) ) )
2928ex 115 . . 3  |-  ( ph  ->  ( A. z  e.  X DECID  z  e.  A  ->  E. f  e.  ( 2o  ^m  X ) ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( f `  x )  =  (/) ) ) )
303, 29biimtrid 152 . 2  |-  ( ph  ->  ( A. x  e.  X DECID  x  e.  A  ->  E. f  e.  ( 2o  ^m  X ) ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( f `  x )  =  (/) ) ) )
31 omex 4589 . . . . . . . . 9  |-  om  e.  _V
32 2ssom 6519 . . . . . . . . 9  |-  2o  C_  om
33 mapss 6685 . . . . . . . . 9  |-  ( ( om  e.  _V  /\  2o  C_  om )  -> 
( 2o  ^m  X
)  C_  ( om  ^m  X ) )
3431, 32, 33mp2an 426 . . . . . . . 8  |-  ( 2o 
^m  X )  C_  ( om  ^m  X )
35 fveq1 5510 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  (
f `  x )  =  ( g `  x ) )
3635eqeq1d 2186 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( f `  x
)  =  1o  <->  ( g `  x )  =  1o ) )
3736ralbidv 2477 . . . . . . . . . . 11  |-  ( f  =  g  ->  ( A. x  e.  ( X  i^i  A ) ( f `  x )  =  1o  <->  A. x  e.  ( X  i^i  A
) ( g `  x )  =  1o ) )
3835eqeq1d 2186 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( f `  x
)  =  (/)  <->  ( g `  x )  =  (/) ) )
3938ralbidv 2477 . . . . . . . . . . 11  |-  ( f  =  g  ->  ( A. x  e.  ( X  \  A ) ( f `  x )  =  (/)  <->  A. x  e.  ( X  \  A ) ( g `  x
)  =  (/) ) )
4037, 39anbi12d 473 . . . . . . . . . 10  |-  ( f  =  g  ->  (
( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) )  <->  ( A. x  e.  ( X  i^i  A ) ( g `
 x )  =  1o  /\  A. x  e.  ( X  \  A
) ( g `  x )  =  (/) ) ) )
4140cbvrexvw 2708 . . . . . . . . 9  |-  ( E. f  e.  ( 2o 
^m  X ) ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( f `  x )  =  (/) )  <->  E. g  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( g `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( g `  x
)  =  (/) ) )
42 fveqeq2 5520 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( g `  x
)  =  1o  <->  ( g `  y )  =  1o ) )
4342cbvralvw 2707 . . . . . . . . . . . 12  |-  ( A. x  e.  ( X  i^i  A ) ( g `
 x )  =  1o  <->  A. y  e.  ( X  i^i  A ) ( g `  y
)  =  1o )
44 1n0 6427 . . . . . . . . . . . . . . . 16  |-  1o  =/=  (/)
4544neii 2349 . . . . . . . . . . . . . . 15  |-  -.  1o  =  (/)
46 eqeq1 2184 . . . . . . . . . . . . . . 15  |-  ( ( g `  y )  =  1o  ->  (
( g `  y
)  =  (/)  <->  1o  =  (/) ) )
4745, 46mtbiri 675 . . . . . . . . . . . . . 14  |-  ( ( g `  y )  =  1o  ->  -.  ( g `  y
)  =  (/) )
4847neqned 2354 . . . . . . . . . . . . 13  |-  ( ( g `  y )  =  1o  ->  (
g `  y )  =/=  (/) )
4948ralimi 2540 . . . . . . . . . . . 12  |-  ( A. y  e.  ( X  i^i  A ) ( g `
 y )  =  1o  ->  A. y  e.  ( X  i^i  A
) ( g `  y )  =/=  (/) )
5043, 49sylbi 121 . . . . . . . . . . 11  |-  ( A. x  e.  ( X  i^i  A ) ( g `
 x )  =  1o  ->  A. y  e.  ( X  i^i  A
) ( g `  y )  =/=  (/) )
51 fveqeq2 5520 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( g `  x
)  =  (/)  <->  ( g `  y )  =  (/) ) )
5251cbvralvw 2707 . . . . . . . . . . . 12  |-  ( A. x  e.  ( X  \  A ) ( g `
 x )  =  (/) 
<-> 
A. y  e.  ( X  \  A ) ( g `  y
)  =  (/) )
5352biimpi 120 . . . . . . . . . . 11  |-  ( A. x  e.  ( X  \  A ) ( g `
 x )  =  (/)  ->  A. y  e.  ( X  \  A ) ( g `  y
)  =  (/) )
5450, 53anim12i 338 . . . . . . . . . 10  |-  ( ( A. x  e.  ( X  i^i  A ) ( g `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( g `  x )  =  (/) )  ->  ( A. y  e.  ( X  i^i  A ) ( g `  y )  =/=  (/)  /\  A. y  e.  ( X  \  A
) ( g `  y )  =  (/) ) )
5554reximi 2574 . . . . . . . . 9  |-  ( E. g  e.  ( 2o 
^m  X ) ( A. x  e.  ( X  i^i  A ) ( g `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( g `  x )  =  (/) )  ->  E. g  e.  ( 2o  ^m  X
) ( A. y  e.  ( X  i^i  A
) ( g `  y )  =/=  (/)  /\  A. y  e.  ( X  \  A ) ( g `
 y )  =  (/) ) )
5641, 55sylbi 121 . . . . . . . 8  |-  ( E. f  e.  ( 2o 
^m  X ) ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( f `  x )  =  (/) )  ->  E. g  e.  ( 2o  ^m  X
) ( A. y  e.  ( X  i^i  A
) ( g `  y )  =/=  (/)  /\  A. y  e.  ( X  \  A ) ( g `
 y )  =  (/) ) )
57 ssrexv 3220 . . . . . . . 8  |-  ( ( 2o  ^m  X ) 
C_  ( om  ^m  X )  ->  ( E. g  e.  ( 2o  ^m  X ) ( A. y  e.  ( X  i^i  A ) ( g `  y
)  =/=  (/)  /\  A. y  e.  ( X  \  A ) ( g `
 y )  =  (/) )  ->  E. g  e.  ( om  ^m  X
) ( A. y  e.  ( X  i^i  A
) ( g `  y )  =/=  (/)  /\  A. y  e.  ( X  \  A ) ( g `
 y )  =  (/) ) ) )
5834, 56, 57mpsyl 65 . . . . . . 7  |-  ( E. f  e.  ( 2o 
^m  X ) ( A. x  e.  ( X  i^i  A ) ( f `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( f `  x )  =  (/) )  ->  E. g  e.  ( om  ^m  X
) ( A. y  e.  ( X  i^i  A
) ( g `  y )  =/=  (/)  /\  A. y  e.  ( X  \  A ) ( g `
 y )  =  (/) ) )
5958adantl 277 . . . . . 6  |-  ( (
ph  /\  E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) ) )  ->  E. g  e.  ( om  ^m  X ) ( A. y  e.  ( X  i^i  A
) ( g `  y )  =/=  (/)  /\  A. y  e.  ( X  \  A ) ( g `
 y )  =  (/) ) )
6059bj-charfunr 14218 . . . . 5  |-  ( (
ph  /\  E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) ) )  ->  A. y  e.  X DECID  -.  y  e.  A )
6160ex 115 . . . 4  |-  ( ph  ->  ( E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) )  ->  A. y  e.  X DECID  -.  y  e.  A )
)
62 eleq1w 2238 . . . . . . 7  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
6362notbid 667 . . . . . 6  |-  ( x  =  y  ->  ( -.  x  e.  A  <->  -.  y  e.  A ) )
6463dcbid 838 . . . . 5  |-  ( x  =  y  ->  (DECID  -.  x  e.  A  <-> DECID  -.  y  e.  A
) )
6564cbvralvw 2707 . . . 4  |-  ( A. x  e.  X DECID  -.  x  e.  A  <->  A. y  e.  X DECID  -.  y  e.  A )
6661, 65syl6ibr 162 . . 3  |-  ( ph  ->  ( E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) )  ->  A. x  e.  X DECID  -.  x  e.  A )
)
67 bj-charfunbi.st . . . . . 6  |-  ( ph  ->  A. x  e.  X STAB  x  e.  A )
6867r19.21bi 2565 . . . . 5  |-  ( (
ph  /\  x  e.  X )  -> STAB  x  e.  A )
69 stdcn 847 . . . . 5  |-  (STAB  x  e.  A  <->  (DECID  -.  x  e.  A  -> DECID  x  e.  A ) )
7068, 69sylib 122 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (DECID  -.  x  e.  A  -> DECID  x  e.  A ) )
7170ralimdva 2544 . . 3  |-  ( ph  ->  ( A. x  e.  X DECID 
-.  x  e.  A  ->  A. x  e.  X DECID  x  e.  A ) )
7266, 71syld 45 . 2  |-  ( ph  ->  ( E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) )  ->  A. x  e.  X DECID  x  e.  A ) )
7330, 72impbid 129 1  |-  ( ph  ->  ( A. x  e.  X DECID  x  e.  A  <->  E. f  e.  ( 2o  ^m  X
) ( A. x  e.  ( X  i^i  A
) ( f `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( f `  x
)  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  STAB wstab 830  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   E.wrex 2456   _Vcvv 2737    \ cdif 3126    i^i cin 3128    C_ wss 3129   (/)c0 3422   ifcif 3534    |-> cmpt 4061   Oncon0 4360   omcom 4586   -->wf 5208   ` cfv 5212  (class class class)co 5869   1oc1o 6404   2oc2o 6405    ^m cmap 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1o 6411  df-2o 6412  df-map 6644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator