| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfgrp2 | Unicode version | ||
| Description: Alternate definition of a group as semigroup with a left identity and a left inverse for each element. This "definition" is weaker than df-grp 13335, based on the definition of a monoid which provides a left and a right identity. (Contributed by AV, 28-Aug-2021.) |
| Ref | Expression |
|---|---|
| dfgrp2.b |
|
| dfgrp2.p |
|
| Ref | Expression |
|---|---|
| dfgrp2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsgrp 13357 |
. . 3
| |
| 2 | grpmnd 13339 |
. . . . 5
| |
| 3 | dfgrp2.b |
. . . . . 6
| |
| 4 | eqid 2205 |
. . . . . 6
| |
| 5 | 3, 4 | mndidcl 13262 |
. . . . 5
|
| 6 | 2, 5 | syl 14 |
. . . 4
|
| 7 | oveq1 5951 |
. . . . . . . 8
| |
| 8 | 7 | eqeq1d 2214 |
. . . . . . 7
|
| 9 | eqeq2 2215 |
. . . . . . . 8
| |
| 10 | 9 | rexbidv 2507 |
. . . . . . 7
|
| 11 | 8, 10 | anbi12d 473 |
. . . . . 6
|
| 12 | 11 | ralbidv 2506 |
. . . . 5
|
| 13 | 12 | adantl 277 |
. . . 4
|
| 14 | dfgrp2.p |
. . . . . . . 8
| |
| 15 | 3, 14, 4 | mndlid 13267 |
. . . . . . 7
|
| 16 | 2, 15 | sylan 283 |
. . . . . 6
|
| 17 | 3, 14, 4 | grpinvex 13342 |
. . . . . 6
|
| 18 | 16, 17 | jca 306 |
. . . . 5
|
| 19 | 18 | ralrimiva 2579 |
. . . 4
|
| 20 | 6, 13, 19 | rspcedvd 2883 |
. . 3
|
| 21 | 1, 20 | jca 306 |
. 2
|
| 22 | 3 | a1i 9 |
. . . . . 6
|
| 23 | 14 | a1i 9 |
. . . . . 6
|
| 24 | sgrpmgm 13239 |
. . . . . . . 8
| |
| 25 | 24 | adantl 277 |
. . . . . . 7
|
| 26 | 3, 14 | mgmcl 13191 |
. . . . . . 7
|
| 27 | 25, 26 | syl3an1 1283 |
. . . . . 6
|
| 28 | 3, 14 | sgrpass 13240 |
. . . . . . 7
|
| 29 | 28 | adantll 476 |
. . . . . 6
|
| 30 | simpll 527 |
. . . . . 6
| |
| 31 | oveq2 5952 |
. . . . . . . . . . . 12
| |
| 32 | id 19 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | eqeq12d 2220 |
. . . . . . . . . . 11
|
| 34 | oveq2 5952 |
. . . . . . . . . . . . 13
| |
| 35 | 34 | eqeq1d 2214 |
. . . . . . . . . . . 12
|
| 36 | 35 | rexbidv 2507 |
. . . . . . . . . . 11
|
| 37 | 33, 36 | anbi12d 473 |
. . . . . . . . . 10
|
| 38 | 37 | rspcv 2873 |
. . . . . . . . 9
|
| 39 | simpl 109 |
. . . . . . . . 9
| |
| 40 | 38, 39 | syl6com 35 |
. . . . . . . 8
|
| 41 | 40 | ad2antlr 489 |
. . . . . . 7
|
| 42 | 41 | imp 124 |
. . . . . 6
|
| 43 | oveq1 5951 |
. . . . . . . . . . . . 13
| |
| 44 | 43 | eqeq1d 2214 |
. . . . . . . . . . . 12
|
| 45 | 44 | cbvrexvw 2743 |
. . . . . . . . . . 11
|
| 46 | 45 | biimpi 120 |
. . . . . . . . . 10
|
| 47 | 46 | adantl 277 |
. . . . . . . . 9
|
| 48 | 38, 47 | syl6com 35 |
. . . . . . . 8
|
| 49 | 48 | ad2antlr 489 |
. . . . . . 7
|
| 50 | 49 | imp 124 |
. . . . . 6
|
| 51 | 22, 23, 27, 29, 30, 42, 50 | isgrpde 13354 |
. . . . 5
|
| 52 | 51 | ex 115 |
. . . 4
|
| 53 | 52 | rexlimiva 2618 |
. . 3
|
| 54 | 53 | impcom 125 |
. 2
|
| 55 | 21, 54 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-riota 5899 df-ov 5947 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 |
| This theorem is referenced by: dfgrp2e 13360 dfgrp3m 13431 |
| Copyright terms: Public domain | W3C validator |