| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfgrp2 | Unicode version | ||
| Description: Alternate definition of a group as semigroup with a left identity and a left inverse for each element. This "definition" is weaker than df-grp 13536, based on the definition of a monoid which provides a left and a right identity. (Contributed by AV, 28-Aug-2021.) |
| Ref | Expression |
|---|---|
| dfgrp2.b |
|
| dfgrp2.p |
|
| Ref | Expression |
|---|---|
| dfgrp2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsgrp 13558 |
. . 3
| |
| 2 | grpmnd 13540 |
. . . . 5
| |
| 3 | dfgrp2.b |
. . . . . 6
| |
| 4 | eqid 2229 |
. . . . . 6
| |
| 5 | 3, 4 | mndidcl 13463 |
. . . . 5
|
| 6 | 2, 5 | syl 14 |
. . . 4
|
| 7 | oveq1 6008 |
. . . . . . . 8
| |
| 8 | 7 | eqeq1d 2238 |
. . . . . . 7
|
| 9 | eqeq2 2239 |
. . . . . . . 8
| |
| 10 | 9 | rexbidv 2531 |
. . . . . . 7
|
| 11 | 8, 10 | anbi12d 473 |
. . . . . 6
|
| 12 | 11 | ralbidv 2530 |
. . . . 5
|
| 13 | 12 | adantl 277 |
. . . 4
|
| 14 | dfgrp2.p |
. . . . . . . 8
| |
| 15 | 3, 14, 4 | mndlid 13468 |
. . . . . . 7
|
| 16 | 2, 15 | sylan 283 |
. . . . . 6
|
| 17 | 3, 14, 4 | grpinvex 13543 |
. . . . . 6
|
| 18 | 16, 17 | jca 306 |
. . . . 5
|
| 19 | 18 | ralrimiva 2603 |
. . . 4
|
| 20 | 6, 13, 19 | rspcedvd 2913 |
. . 3
|
| 21 | 1, 20 | jca 306 |
. 2
|
| 22 | 3 | a1i 9 |
. . . . . 6
|
| 23 | 14 | a1i 9 |
. . . . . 6
|
| 24 | sgrpmgm 13440 |
. . . . . . . 8
| |
| 25 | 24 | adantl 277 |
. . . . . . 7
|
| 26 | 3, 14 | mgmcl 13392 |
. . . . . . 7
|
| 27 | 25, 26 | syl3an1 1304 |
. . . . . 6
|
| 28 | 3, 14 | sgrpass 13441 |
. . . . . . 7
|
| 29 | 28 | adantll 476 |
. . . . . 6
|
| 30 | simpll 527 |
. . . . . 6
| |
| 31 | oveq2 6009 |
. . . . . . . . . . . 12
| |
| 32 | id 19 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | eqeq12d 2244 |
. . . . . . . . . . 11
|
| 34 | oveq2 6009 |
. . . . . . . . . . . . 13
| |
| 35 | 34 | eqeq1d 2238 |
. . . . . . . . . . . 12
|
| 36 | 35 | rexbidv 2531 |
. . . . . . . . . . 11
|
| 37 | 33, 36 | anbi12d 473 |
. . . . . . . . . 10
|
| 38 | 37 | rspcv 2903 |
. . . . . . . . 9
|
| 39 | simpl 109 |
. . . . . . . . 9
| |
| 40 | 38, 39 | syl6com 35 |
. . . . . . . 8
|
| 41 | 40 | ad2antlr 489 |
. . . . . . 7
|
| 42 | 41 | imp 124 |
. . . . . 6
|
| 43 | oveq1 6008 |
. . . . . . . . . . . . 13
| |
| 44 | 43 | eqeq1d 2238 |
. . . . . . . . . . . 12
|
| 45 | 44 | cbvrexvw 2770 |
. . . . . . . . . . 11
|
| 46 | 45 | biimpi 120 |
. . . . . . . . . 10
|
| 47 | 46 | adantl 277 |
. . . . . . . . 9
|
| 48 | 38, 47 | syl6com 35 |
. . . . . . . 8
|
| 49 | 48 | ad2antlr 489 |
. . . . . . 7
|
| 50 | 49 | imp 124 |
. . . . . 6
|
| 51 | 22, 23, 27, 29, 30, 42, 50 | isgrpde 13555 |
. . . . 5
|
| 52 | 51 | ex 115 |
. . . 4
|
| 53 | 52 | rexlimiva 2643 |
. . 3
|
| 54 | 53 | impcom 125 |
. 2
|
| 55 | 21, 54 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5954 df-ov 6004 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 |
| This theorem is referenced by: dfgrp2e 13561 dfgrp3m 13632 |
| Copyright terms: Public domain | W3C validator |