Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfgrp2 | Unicode version |
Description: Alternate definition of a group as semigroup with a left identity and a left inverse for each element. This "definition" is weaker than df-grp 12711, based on the definition of a monoid which provides a left and a right identity. (Contributed by AV, 28-Aug-2021.) |
Ref | Expression |
---|---|
dfgrp2.b | |
dfgrp2.p |
Ref | Expression |
---|---|
dfgrp2 | Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsgrp 12731 | . . 3 Smgrp | |
2 | grpmnd 12715 | . . . . 5 | |
3 | dfgrp2.b | . . . . . 6 | |
4 | eqid 2170 | . . . . . 6 | |
5 | 3, 4 | mndidcl 12666 | . . . . 5 |
6 | 2, 5 | syl 14 | . . . 4 |
7 | oveq1 5860 | . . . . . . . 8 | |
8 | 7 | eqeq1d 2179 | . . . . . . 7 |
9 | eqeq2 2180 | . . . . . . . 8 | |
10 | 9 | rexbidv 2471 | . . . . . . 7 |
11 | 8, 10 | anbi12d 470 | . . . . . 6 |
12 | 11 | ralbidv 2470 | . . . . 5 |
13 | 12 | adantl 275 | . . . 4 |
14 | dfgrp2.p | . . . . . . . 8 | |
15 | 3, 14, 4 | mndlid 12671 | . . . . . . 7 |
16 | 2, 15 | sylan 281 | . . . . . 6 |
17 | 3, 14, 4 | grpinvex 12718 | . . . . . 6 |
18 | 16, 17 | jca 304 | . . . . 5 |
19 | 18 | ralrimiva 2543 | . . . 4 |
20 | 6, 13, 19 | rspcedvd 2840 | . . 3 |
21 | 1, 20 | jca 304 | . 2 Smgrp |
22 | 3 | a1i 9 | . . . . . 6 Smgrp |
23 | 14 | a1i 9 | . . . . . 6 Smgrp |
24 | sgrpmgm 12648 | . . . . . . . 8 Smgrp Mgm | |
25 | 24 | adantl 275 | . . . . . . 7 Smgrp Mgm |
26 | 3, 14 | mgmcl 12613 | . . . . . . 7 Mgm |
27 | 25, 26 | syl3an1 1266 | . . . . . 6 Smgrp |
28 | 3, 14 | sgrpass 12649 | . . . . . . 7 Smgrp |
29 | 28 | adantll 473 | . . . . . 6 Smgrp |
30 | simpll 524 | . . . . . 6 Smgrp | |
31 | oveq2 5861 | . . . . . . . . . . . 12 | |
32 | id 19 | . . . . . . . . . . . 12 | |
33 | 31, 32 | eqeq12d 2185 | . . . . . . . . . . 11 |
34 | oveq2 5861 | . . . . . . . . . . . . 13 | |
35 | 34 | eqeq1d 2179 | . . . . . . . . . . . 12 |
36 | 35 | rexbidv 2471 | . . . . . . . . . . 11 |
37 | 33, 36 | anbi12d 470 | . . . . . . . . . 10 |
38 | 37 | rspcv 2830 | . . . . . . . . 9 |
39 | simpl 108 | . . . . . . . . 9 | |
40 | 38, 39 | syl6com 35 | . . . . . . . 8 |
41 | 40 | ad2antlr 486 | . . . . . . 7 Smgrp |
42 | 41 | imp 123 | . . . . . 6 Smgrp |
43 | oveq1 5860 | . . . . . . . . . . . . 13 | |
44 | 43 | eqeq1d 2179 | . . . . . . . . . . . 12 |
45 | 44 | cbvrexvw 2701 | . . . . . . . . . . 11 |
46 | 45 | biimpi 119 | . . . . . . . . . 10 |
47 | 46 | adantl 275 | . . . . . . . . 9 |
48 | 38, 47 | syl6com 35 | . . . . . . . 8 |
49 | 48 | ad2antlr 486 | . . . . . . 7 Smgrp |
50 | 49 | imp 123 | . . . . . 6 Smgrp |
51 | 22, 23, 27, 29, 30, 42, 50 | isgrpde 12728 | . . . . 5 Smgrp |
52 | 51 | ex 114 | . . . 4 Smgrp |
53 | 52 | rexlimiva 2582 | . . 3 Smgrp |
54 | 53 | impcom 124 | . 2 Smgrp |
55 | 21, 54 | impbii 125 | 1 Smgrp |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 c0g 12596 Mgmcmgm 12608 Smgrpcsgrp 12642 cmnd 12652 cgrp 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-riota 5809 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-0g 12598 df-mgm 12610 df-sgrp 12643 df-mnd 12653 df-grp 12711 |
This theorem is referenced by: dfgrp2e 12733 |
Copyright terms: Public domain | W3C validator |