| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfgrp2 | Unicode version | ||
| Description: Alternate definition of a group as semigroup with a left identity and a left inverse for each element. This "definition" is weaker than df-grp 13135, based on the definition of a monoid which provides a left and a right identity. (Contributed by AV, 28-Aug-2021.) | 
| Ref | Expression | 
|---|---|
| dfgrp2.b | 
 | 
| dfgrp2.p | 
 | 
| Ref | Expression | 
|---|---|
| dfgrp2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpsgrp 13157 | 
. . 3
 | |
| 2 | grpmnd 13139 | 
. . . . 5
 | |
| 3 | dfgrp2.b | 
. . . . . 6
 | |
| 4 | eqid 2196 | 
. . . . . 6
 | |
| 5 | 3, 4 | mndidcl 13071 | 
. . . . 5
 | 
| 6 | 2, 5 | syl 14 | 
. . . 4
 | 
| 7 | oveq1 5929 | 
. . . . . . . 8
 | |
| 8 | 7 | eqeq1d 2205 | 
. . . . . . 7
 | 
| 9 | eqeq2 2206 | 
. . . . . . . 8
 | |
| 10 | 9 | rexbidv 2498 | 
. . . . . . 7
 | 
| 11 | 8, 10 | anbi12d 473 | 
. . . . . 6
 | 
| 12 | 11 | ralbidv 2497 | 
. . . . 5
 | 
| 13 | 12 | adantl 277 | 
. . . 4
 | 
| 14 | dfgrp2.p | 
. . . . . . . 8
 | |
| 15 | 3, 14, 4 | mndlid 13076 | 
. . . . . . 7
 | 
| 16 | 2, 15 | sylan 283 | 
. . . . . 6
 | 
| 17 | 3, 14, 4 | grpinvex 13142 | 
. . . . . 6
 | 
| 18 | 16, 17 | jca 306 | 
. . . . 5
 | 
| 19 | 18 | ralrimiva 2570 | 
. . . 4
 | 
| 20 | 6, 13, 19 | rspcedvd 2874 | 
. . 3
 | 
| 21 | 1, 20 | jca 306 | 
. 2
 | 
| 22 | 3 | a1i 9 | 
. . . . . 6
 | 
| 23 | 14 | a1i 9 | 
. . . . . 6
 | 
| 24 | sgrpmgm 13050 | 
. . . . . . . 8
 | |
| 25 | 24 | adantl 277 | 
. . . . . . 7
 | 
| 26 | 3, 14 | mgmcl 13002 | 
. . . . . . 7
 | 
| 27 | 25, 26 | syl3an1 1282 | 
. . . . . 6
 | 
| 28 | 3, 14 | sgrpass 13051 | 
. . . . . . 7
 | 
| 29 | 28 | adantll 476 | 
. . . . . 6
 | 
| 30 | simpll 527 | 
. . . . . 6
 | |
| 31 | oveq2 5930 | 
. . . . . . . . . . . 12
 | |
| 32 | id 19 | 
. . . . . . . . . . . 12
 | |
| 33 | 31, 32 | eqeq12d 2211 | 
. . . . . . . . . . 11
 | 
| 34 | oveq2 5930 | 
. . . . . . . . . . . . 13
 | |
| 35 | 34 | eqeq1d 2205 | 
. . . . . . . . . . . 12
 | 
| 36 | 35 | rexbidv 2498 | 
. . . . . . . . . . 11
 | 
| 37 | 33, 36 | anbi12d 473 | 
. . . . . . . . . 10
 | 
| 38 | 37 | rspcv 2864 | 
. . . . . . . . 9
 | 
| 39 | simpl 109 | 
. . . . . . . . 9
 | |
| 40 | 38, 39 | syl6com 35 | 
. . . . . . . 8
 | 
| 41 | 40 | ad2antlr 489 | 
. . . . . . 7
 | 
| 42 | 41 | imp 124 | 
. . . . . 6
 | 
| 43 | oveq1 5929 | 
. . . . . . . . . . . . 13
 | |
| 44 | 43 | eqeq1d 2205 | 
. . . . . . . . . . . 12
 | 
| 45 | 44 | cbvrexvw 2734 | 
. . . . . . . . . . 11
 | 
| 46 | 45 | biimpi 120 | 
. . . . . . . . . 10
 | 
| 47 | 46 | adantl 277 | 
. . . . . . . . 9
 | 
| 48 | 38, 47 | syl6com 35 | 
. . . . . . . 8
 | 
| 49 | 48 | ad2antlr 489 | 
. . . . . . 7
 | 
| 50 | 49 | imp 124 | 
. . . . . 6
 | 
| 51 | 22, 23, 27, 29, 30, 42, 50 | isgrpde 13154 | 
. . . . 5
 | 
| 52 | 51 | ex 115 | 
. . . 4
 | 
| 53 | 52 | rexlimiva 2609 | 
. . 3
 | 
| 54 | 53 | impcom 125 | 
. 2
 | 
| 55 | 21, 54 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 | 
| This theorem is referenced by: dfgrp2e 13160 dfgrp3m 13231 | 
| Copyright terms: Public domain | W3C validator |