Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfgrp2 | Unicode version |
Description: Alternate definition of a group as semigroup with a left identity and a left inverse for each element. This "definition" is weaker than df-grp 12742, based on the definition of a monoid which provides a left and a right identity. (Contributed by AV, 28-Aug-2021.) |
Ref | Expression |
---|---|
dfgrp2.b | |
dfgrp2.p |
Ref | Expression |
---|---|
dfgrp2 | Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsgrp 12763 | . . 3 Smgrp | |
2 | grpmnd 12746 | . . . . 5 | |
3 | dfgrp2.b | . . . . . 6 | |
4 | eqid 2175 | . . . . . 6 | |
5 | 3, 4 | mndidcl 12697 | . . . . 5 |
6 | 2, 5 | syl 14 | . . . 4 |
7 | oveq1 5872 | . . . . . . . 8 | |
8 | 7 | eqeq1d 2184 | . . . . . . 7 |
9 | eqeq2 2185 | . . . . . . . 8 | |
10 | 9 | rexbidv 2476 | . . . . . . 7 |
11 | 8, 10 | anbi12d 473 | . . . . . 6 |
12 | 11 | ralbidv 2475 | . . . . 5 |
13 | 12 | adantl 277 | . . . 4 |
14 | dfgrp2.p | . . . . . . . 8 | |
15 | 3, 14, 4 | mndlid 12702 | . . . . . . 7 |
16 | 2, 15 | sylan 283 | . . . . . 6 |
17 | 3, 14, 4 | grpinvex 12749 | . . . . . 6 |
18 | 16, 17 | jca 306 | . . . . 5 |
19 | 18 | ralrimiva 2548 | . . . 4 |
20 | 6, 13, 19 | rspcedvd 2845 | . . 3 |
21 | 1, 20 | jca 306 | . 2 Smgrp |
22 | 3 | a1i 9 | . . . . . 6 Smgrp |
23 | 14 | a1i 9 | . . . . . 6 Smgrp |
24 | sgrpmgm 12679 | . . . . . . . 8 Smgrp Mgm | |
25 | 24 | adantl 277 | . . . . . . 7 Smgrp Mgm |
26 | 3, 14 | mgmcl 12644 | . . . . . . 7 Mgm |
27 | 25, 26 | syl3an1 1271 | . . . . . 6 Smgrp |
28 | 3, 14 | sgrpass 12680 | . . . . . . 7 Smgrp |
29 | 28 | adantll 476 | . . . . . 6 Smgrp |
30 | simpll 527 | . . . . . 6 Smgrp | |
31 | oveq2 5873 | . . . . . . . . . . . 12 | |
32 | id 19 | . . . . . . . . . . . 12 | |
33 | 31, 32 | eqeq12d 2190 | . . . . . . . . . . 11 |
34 | oveq2 5873 | . . . . . . . . . . . . 13 | |
35 | 34 | eqeq1d 2184 | . . . . . . . . . . . 12 |
36 | 35 | rexbidv 2476 | . . . . . . . . . . 11 |
37 | 33, 36 | anbi12d 473 | . . . . . . . . . 10 |
38 | 37 | rspcv 2835 | . . . . . . . . 9 |
39 | simpl 109 | . . . . . . . . 9 | |
40 | 38, 39 | syl6com 35 | . . . . . . . 8 |
41 | 40 | ad2antlr 489 | . . . . . . 7 Smgrp |
42 | 41 | imp 124 | . . . . . 6 Smgrp |
43 | oveq1 5872 | . . . . . . . . . . . . 13 | |
44 | 43 | eqeq1d 2184 | . . . . . . . . . . . 12 |
45 | 44 | cbvrexvw 2706 | . . . . . . . . . . 11 |
46 | 45 | biimpi 120 | . . . . . . . . . 10 |
47 | 46 | adantl 277 | . . . . . . . . 9 |
48 | 38, 47 | syl6com 35 | . . . . . . . 8 |
49 | 48 | ad2antlr 489 | . . . . . . 7 Smgrp |
50 | 49 | imp 124 | . . . . . 6 Smgrp |
51 | 22, 23, 27, 29, 30, 42, 50 | isgrpde 12760 | . . . . 5 Smgrp |
52 | 51 | ex 115 | . . . 4 Smgrp |
53 | 52 | rexlimiva 2587 | . . 3 Smgrp |
54 | 53 | impcom 125 | . 2 Smgrp |
55 | 21, 54 | impbii 126 | 1 Smgrp |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 wral 2453 wrex 2454 cfv 5208 (class class class)co 5865 cbs 12429 cplusg 12493 c0g 12627 Mgmcmgm 12639 Smgrpcsgrp 12673 cmnd 12683 cgrp 12739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-inn 8893 df-2 8951 df-ndx 12432 df-slot 12433 df-base 12435 df-plusg 12506 df-0g 12629 df-mgm 12641 df-sgrp 12674 df-mnd 12684 df-grp 12742 |
This theorem is referenced by: dfgrp2e 12765 dfgrp3m 12830 |
Copyright terms: Public domain | W3C validator |