ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngmgp Unicode version

Theorem crngmgp 13500
Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g  |-  G  =  (mulGrp `  R )
Assertion
Ref Expression
crngmgp  |-  ( R  e.  CRing  ->  G  e. CMnd )

Proof of Theorem crngmgp
StepHypRef Expression
1 ringmgp.g . . 3  |-  G  =  (mulGrp `  R )
21iscrng 13499 . 2  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  G  e. CMnd ) )
32simprbi 275 1  |-  ( R  e.  CRing  ->  G  e. CMnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   ` cfv 5254  CMndccmn 13354  mulGrpcmgp 13416   Ringcrg 13492   CRingccrg 13493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-cring 13495
This theorem is referenced by:  crngcom  13510  unitabl  13613  subrgcrng  13721  lgseisenlem3  15188  lgseisenlem4  15189
  Copyright terms: Public domain W3C validator