ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngmgp Unicode version

Theorem crngmgp 13881
Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g  |-  G  =  (mulGrp `  R )
Assertion
Ref Expression
crngmgp  |-  ( R  e.  CRing  ->  G  e. CMnd )

Proof of Theorem crngmgp
StepHypRef Expression
1 ringmgp.g . . 3  |-  G  =  (mulGrp `  R )
21iscrng 13880 . 2  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  G  e. CMnd ) )
32simprbi 275 1  |-  ( R  e.  CRing  ->  G  e. CMnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   ` cfv 5290  CMndccmn 13735  mulGrpcmgp 13797   Ringcrg 13873   CRingccrg 13874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-cring 13876
This theorem is referenced by:  crngcom  13891  unitabl  13994  subrgcrng  14102  lgseisenlem3  15664  lgseisenlem4  15665
  Copyright terms: Public domain W3C validator