ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgcrng Unicode version

Theorem subrgcrng 14020
Description: A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypothesis
Ref Expression
subrgring.1  |-  S  =  ( Rs  A )
Assertion
Ref Expression
subrgcrng  |-  ( ( R  e.  CRing  /\  A  e.  (SubRing `  R )
)  ->  S  e.  CRing
)

Proof of Theorem subrgcrng
StepHypRef Expression
1 subrgring.1 . . . 4  |-  S  =  ( Rs  A )
21subrgring 14019 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
32adantl 277 . 2  |-  ( ( R  e.  CRing  /\  A  e.  (SubRing `  R )
)  ->  S  e.  Ring )
4 eqid 2205 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
51, 4mgpress 13726 . . 3  |-  ( ( R  e.  CRing  /\  A  e.  (SubRing `  R )
)  ->  ( (mulGrp `  R )s  A )  =  (mulGrp `  S ) )
6 eqidd 2206 . . . 4  |-  ( ( R  e.  CRing  /\  A  e.  (SubRing `  R )
)  ->  ( (mulGrp `  R )s  A )  =  ( (mulGrp `  R )s  A
) )
74crngmgp 13799 . . . . 5  |-  ( R  e.  CRing  ->  (mulGrp `  R
)  e. CMnd )
87adantr 276 . . . 4  |-  ( ( R  e.  CRing  /\  A  e.  (SubRing `  R )
)  ->  (mulGrp `  R
)  e. CMnd )
9 eqid 2205 . . . . . . 7  |-  (mulGrp `  S )  =  (mulGrp `  S )
109ringmgp 13797 . . . . . 6  |-  ( S  e.  Ring  ->  (mulGrp `  S )  e.  Mnd )
113, 10syl 14 . . . . 5  |-  ( ( R  e.  CRing  /\  A  e.  (SubRing `  R )
)  ->  (mulGrp `  S
)  e.  Mnd )
125, 11eqeltrd 2282 . . . 4  |-  ( ( R  e.  CRing  /\  A  e.  (SubRing `  R )
)  ->  ( (mulGrp `  R )s  A )  e.  Mnd )
13 simpr 110 . . . 4  |-  ( ( R  e.  CRing  /\  A  e.  (SubRing `  R )
)  ->  A  e.  (SubRing `  R ) )
146, 8, 12, 13subcmnd 13702 . . 3  |-  ( ( R  e.  CRing  /\  A  e.  (SubRing `  R )
)  ->  ( (mulGrp `  R )s  A )  e. CMnd )
155, 14eqeltrrd 2283 . 2  |-  ( ( R  e.  CRing  /\  A  e.  (SubRing `  R )
)  ->  (mulGrp `  S
)  e. CMnd )
169iscrng 13798 . 2  |-  ( S  e.  CRing 
<->  ( S  e.  Ring  /\  (mulGrp `  S )  e. CMnd ) )
173, 15, 16sylanbrc 417 1  |-  ( ( R  e.  CRing  /\  A  e.  (SubRing `  R )
)  ->  S  e.  CRing
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   ` cfv 5272  (class class class)co 5946   ↾s cress 12866   Mndcmnd 13281  CMndccmn 13653  mulGrpcmgp 13715   Ringcrg 13791   CRingccrg 13792  SubRingcsubrg 14012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873  df-plusg 12955  df-mulr 12956  df-cmn 13655  df-mgp 13716  df-ring 13793  df-cring 13794  df-subrg 14014
This theorem is referenced by:  zringcrng  14387
  Copyright terms: Public domain W3C validator