| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > crngmgp | GIF version | ||
| Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| crngmgp | ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 2 | 1 | iscrng 13961 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
| 3 | 2 | simprbi 275 | 1 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ‘cfv 5317 CMndccmn 13816 mulGrpcmgp 13878 Ringcrg 13954 CRingccrg 13955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-cring 13957 |
| This theorem is referenced by: crngcom 13972 unitabl 14075 subrgcrng 14183 lgseisenlem3 15745 lgseisenlem4 15746 |
| Copyright terms: Public domain | W3C validator |