| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > crngmgp | GIF version | ||
| Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| crngmgp | ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 2 | 1 | iscrng 13683 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
| 3 | 2 | simprbi 275 | 1 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ‘cfv 5268 CMndccmn 13538 mulGrpcmgp 13600 Ringcrg 13676 CRingccrg 13677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5229 df-fv 5276 df-cring 13679 |
| This theorem is referenced by: crngcom 13694 unitabl 13797 subrgcrng 13905 lgseisenlem3 15467 lgseisenlem4 15468 |
| Copyright terms: Public domain | W3C validator |