ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrng Unicode version

Theorem iscrng 12979
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g  |-  G  =  (mulGrp `  R )
Assertion
Ref Expression
iscrng  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  G  e. CMnd ) )

Proof of Theorem iscrng
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 fveq2 5507 . . . 4  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
2 ringmgp.g . . . 4  |-  G  =  (mulGrp `  R )
31, 2eqtr4di 2226 . . 3  |-  ( r  =  R  ->  (mulGrp `  r )  =  G )
43eleq1d 2244 . 2  |-  ( r  =  R  ->  (
(mulGrp `  r )  e. CMnd  <-> 
G  e. CMnd ) )
5 df-cring 12975 . 2  |-  CRing  =  {
r  e.  Ring  |  (mulGrp `  r )  e. CMnd }
64, 5elrab2 2894 1  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  G  e. CMnd ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   ` cfv 5208  CMndccmn 12884  mulGrpcmgp 12925   Ringcrg 12972   CRingccrg 12973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-rab 2462  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-iota 5170  df-fv 5216  df-cring 12975
This theorem is referenced by:  crngmgp  12980  crngring  12984  iscrng2  12991  crngpropd  13010  iscrngd  13013
  Copyright terms: Public domain W3C validator