ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrng Unicode version

Theorem iscrng 13880
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g  |-  G  =  (mulGrp `  R )
Assertion
Ref Expression
iscrng  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  G  e. CMnd ) )

Proof of Theorem iscrng
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 fveq2 5599 . . . 4  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
2 ringmgp.g . . . 4  |-  G  =  (mulGrp `  R )
31, 2eqtr4di 2258 . . 3  |-  ( r  =  R  ->  (mulGrp `  r )  =  G )
43eleq1d 2276 . 2  |-  ( r  =  R  ->  (
(mulGrp `  r )  e. CMnd  <-> 
G  e. CMnd ) )
5 df-cring 13876 . 2  |-  CRing  =  {
r  e.  Ring  |  (mulGrp `  r )  e. CMnd }
64, 5elrab2 2939 1  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  G  e. CMnd ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   ` cfv 5290  CMndccmn 13735  mulGrpcmgp 13797   Ringcrg 13873   CRingccrg 13874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-cring 13876
This theorem is referenced by:  crngmgp  13881  crngring  13885  iscrng2  13892  crngpropd  13916  iscrngd  13919  subrgcrng  14102
  Copyright terms: Public domain W3C validator