ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrng Unicode version

Theorem iscrng 13559
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g  |-  G  =  (mulGrp `  R )
Assertion
Ref Expression
iscrng  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  G  e. CMnd ) )

Proof of Theorem iscrng
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 fveq2 5558 . . . 4  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
2 ringmgp.g . . . 4  |-  G  =  (mulGrp `  R )
31, 2eqtr4di 2247 . . 3  |-  ( r  =  R  ->  (mulGrp `  r )  =  G )
43eleq1d 2265 . 2  |-  ( r  =  R  ->  (
(mulGrp `  r )  e. CMnd  <-> 
G  e. CMnd ) )
5 df-cring 13555 . 2  |-  CRing  =  {
r  e.  Ring  |  (mulGrp `  r )  e. CMnd }
64, 5elrab2 2923 1  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  G  e. CMnd ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   ` cfv 5258  CMndccmn 13414  mulGrpcmgp 13476   Ringcrg 13552   CRingccrg 13553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-cring 13555
This theorem is referenced by:  crngmgp  13560  crngring  13564  iscrng2  13571  crngpropd  13595  iscrngd  13598  subrgcrng  13781
  Copyright terms: Public domain W3C validator