ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrng Unicode version

Theorem iscrng 13186
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g  |-  G  =  (mulGrp `  R )
Assertion
Ref Expression
iscrng  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  G  e. CMnd ) )

Proof of Theorem iscrng
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 fveq2 5516 . . . 4  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
2 ringmgp.g . . . 4  |-  G  =  (mulGrp `  R )
31, 2eqtr4di 2228 . . 3  |-  ( r  =  R  ->  (mulGrp `  r )  =  G )
43eleq1d 2246 . 2  |-  ( r  =  R  ->  (
(mulGrp `  r )  e. CMnd  <-> 
G  e. CMnd ) )
5 df-cring 13182 . 2  |-  CRing  =  {
r  e.  Ring  |  (mulGrp `  r )  e. CMnd }
64, 5elrab2 2897 1  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  G  e. CMnd ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   ` cfv 5217  CMndccmn 13088  mulGrpcmgp 13130   Ringcrg 13179   CRingccrg 13180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-rab 2464  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-iota 5179  df-fv 5225  df-cring 13182
This theorem is referenced by:  crngmgp  13187  crngring  13191  iscrng2  13198  crngpropd  13218  iscrngd  13221  subrgcrng  13346
  Copyright terms: Public domain W3C validator