Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iscrng | Unicode version |
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
ringmgp.g | mulGrp |
Ref | Expression |
---|---|
iscrng | CMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5507 | . . . 4 mulGrp mulGrp | |
2 | ringmgp.g | . . . 4 mulGrp | |
3 | 1, 2 | eqtr4di 2226 | . . 3 mulGrp |
4 | 3 | eleq1d 2244 | . 2 mulGrp CMnd CMnd |
5 | df-cring 12975 | . 2 mulGrp CMnd | |
6 | 4, 5 | elrab2 2894 | 1 CMnd |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 wceq 1353 wcel 2146 cfv 5208 CMndccmn 12884 mulGrpcmgp 12925 crg 12972 ccrg 12973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-rab 2462 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-cring 12975 |
This theorem is referenced by: crngmgp 12980 crngring 12984 iscrng2 12991 crngpropd 13010 iscrngd 13013 |
Copyright terms: Public domain | W3C validator |