ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngcom Unicode version

Theorem crngcom 13150
Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
ringcl.b  |-  B  =  ( Base `  R
)
ringcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
crngcom  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  =  ( Y  .x.  X
) )

Proof of Theorem crngcom
StepHypRef Expression
1 eqid 2177 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
21crngmgp 13140 . . . 4  |-  ( R  e.  CRing  ->  (mulGrp `  R
)  e. CMnd )
323ad2ant1 1018 . . 3  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  (mulGrp `  R )  e. CMnd )
4 simp2 998 . . . 4  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
5 ringcl.b . . . . . 6  |-  B  =  ( Base `  R
)
61, 5mgpbasg 13089 . . . . 5  |-  ( R  e.  CRing  ->  B  =  ( Base `  (mulGrp `  R
) ) )
763ad2ant1 1018 . . . 4  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  B  =  ( Base `  (mulGrp `  R ) ) )
84, 7eleqtrd 2256 . . 3  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  ( Base `  (mulGrp `  R ) ) )
9 simp3 999 . . . 4  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
109, 7eleqtrd 2256 . . 3  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  ( Base `  (mulGrp `  R ) ) )
11 eqid 2177 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
12 eqid 2177 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
1311, 12cmncom 13058 . . 3  |-  ( ( (mulGrp `  R )  e. CMnd  /\  X  e.  (
Base `  (mulGrp `  R
) )  /\  Y  e.  ( Base `  (mulGrp `  R ) ) )  ->  ( X ( +g  `  (mulGrp `  R ) ) Y )  =  ( Y ( +g  `  (mulGrp `  R ) ) X ) )
143, 8, 10, 13syl3anc 1238 . 2  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( +g  `  (mulGrp `  R ) ) Y )  =  ( Y ( +g  `  (mulGrp `  R ) ) X ) )
15 ringcl.t . . . . 5  |-  .x.  =  ( .r `  R )
161, 15mgpplusgg 13087 . . . 4  |-  ( R  e.  CRing  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
17163ad2ant1 1018 . . 3  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1817oveqd 5891 . 2  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  =  ( X ( +g  `  (mulGrp `  R )
) Y ) )
1917oveqd 5891 . 2  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .x.  X )  =  ( Y ( +g  `  (mulGrp `  R )
) X ) )
2014, 18, 193eqtr4d 2220 1  |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  =  ( Y  .x.  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2148   ` cfv 5216  (class class class)co 5874   Basecbs 12456   +g cplusg 12530   .rcmulr 12531  CMndccmn 13041  mulGrpcmgp 13083   CRingccrg 13133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7992  df-mnf 7993  df-ltxr 7995  df-inn 8918  df-2 8976  df-3 8977  df-ndx 12459  df-slot 12460  df-base 12462  df-sets 12463  df-plusg 12543  df-mulr 12544  df-cmn 13043  df-mgp 13084  df-cring 13135
This theorem is referenced by:  crngoppr  13197  unitmulclb  13236  rdivmuldivd  13266
  Copyright terms: Public domain W3C validator