| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbhypf | Unicode version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2850 for class substitution version. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| csbhypf.1 |
|
| csbhypf.2 |
|
| csbhypf.3 |
|
| Ref | Expression |
|---|---|
| csbhypf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbhypf.1 |
. . . 4
| |
| 2 | 1 | nfeq2 2384 |
. . 3
|
| 3 | nfcsb1v 3157 |
. . . 4
| |
| 4 | csbhypf.2 |
. . . 4
| |
| 5 | 3, 4 | nfeq 2380 |
. . 3
|
| 6 | 2, 5 | nfim 1618 |
. 2
|
| 7 | eqeq1 2236 |
. . 3
| |
| 8 | csbeq1a 3133 |
. . . 4
| |
| 9 | 8 | eqeq1d 2238 |
. . 3
|
| 10 | 7, 9 | imbi12d 234 |
. 2
|
| 11 | csbhypf.3 |
. 2
| |
| 12 | 6, 10, 11 | chvar 1803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-sbc 3029 df-csb 3125 |
| This theorem is referenced by: disji2 4074 tfisi 4678 |
| Copyright terms: Public domain | W3C validator |