Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbhypf | Unicode version |
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2779 for class substitution version. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
csbhypf.1 | |
csbhypf.2 | |
csbhypf.3 |
Ref | Expression |
---|---|
csbhypf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbhypf.1 | . . . 4 | |
2 | 1 | nfeq2 2324 | . . 3 |
3 | nfcsb1v 3082 | . . . 4 | |
4 | csbhypf.2 | . . . 4 | |
5 | 3, 4 | nfeq 2320 | . . 3 |
6 | 2, 5 | nfim 1565 | . 2 |
7 | eqeq1 2177 | . . 3 | |
8 | csbeq1a 3058 | . . . 4 | |
9 | 8 | eqeq1d 2179 | . . 3 |
10 | 7, 9 | imbi12d 233 | . 2 |
11 | csbhypf.3 | . 2 | |
12 | 6, 10, 11 | chvar 1750 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wnfc 2299 csb 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-sbc 2956 df-csb 3050 |
This theorem is referenced by: disji2 3982 tfisi 4571 |
Copyright terms: Public domain | W3C validator |