ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbhypf Unicode version

Theorem csbhypf 3083
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2775 for class substitution version. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
csbhypf.1  |-  F/_ x A
csbhypf.2  |-  F/_ x C
csbhypf.3  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
csbhypf  |-  ( y  =  A  ->  [_ y  /  x ]_ B  =  C )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)

Proof of Theorem csbhypf
StepHypRef Expression
1 csbhypf.1 . . . 4  |-  F/_ x A
21nfeq2 2320 . . 3  |-  F/ x  y  =  A
3 nfcsb1v 3078 . . . 4  |-  F/_ x [_ y  /  x ]_ B
4 csbhypf.2 . . . 4  |-  F/_ x C
53, 4nfeq 2316 . . 3  |-  F/ x [_ y  /  x ]_ B  =  C
62, 5nfim 1560 . 2  |-  F/ x
( y  =  A  ->  [_ y  /  x ]_ B  =  C
)
7 eqeq1 2172 . . 3  |-  ( x  =  y  ->  (
x  =  A  <->  y  =  A ) )
8 csbeq1a 3054 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
98eqeq1d 2174 . . 3  |-  ( x  =  y  ->  ( B  =  C  <->  [_ y  /  x ]_ B  =  C ) )
107, 9imbi12d 233 . 2  |-  ( x  =  y  ->  (
( x  =  A  ->  B  =  C )  <->  ( y  =  A  ->  [_ y  /  x ]_ B  =  C ) ) )
11 csbhypf.3 . 2  |-  ( x  =  A  ->  B  =  C )
126, 10, 11chvar 1745 1  |-  ( y  =  A  ->  [_ y  /  x ]_ B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   F/_wnfc 2295   [_csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-sbc 2952  df-csb 3046
This theorem is referenced by:  disji2  3975  tfisi  4564
  Copyright terms: Public domain W3C validator