ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbhypf Unicode version

Theorem csbhypf 3136
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2824 for class substitution version. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
csbhypf.1  |-  F/_ x A
csbhypf.2  |-  F/_ x C
csbhypf.3  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
csbhypf  |-  ( y  =  A  ->  [_ y  /  x ]_ B  =  C )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)

Proof of Theorem csbhypf
StepHypRef Expression
1 csbhypf.1 . . . 4  |-  F/_ x A
21nfeq2 2361 . . 3  |-  F/ x  y  =  A
3 nfcsb1v 3130 . . . 4  |-  F/_ x [_ y  /  x ]_ B
4 csbhypf.2 . . . 4  |-  F/_ x C
53, 4nfeq 2357 . . 3  |-  F/ x [_ y  /  x ]_ B  =  C
62, 5nfim 1596 . 2  |-  F/ x
( y  =  A  ->  [_ y  /  x ]_ B  =  C
)
7 eqeq1 2213 . . 3  |-  ( x  =  y  ->  (
x  =  A  <->  y  =  A ) )
8 csbeq1a 3106 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
98eqeq1d 2215 . . 3  |-  ( x  =  y  ->  ( B  =  C  <->  [_ y  /  x ]_ B  =  C ) )
107, 9imbi12d 234 . 2  |-  ( x  =  y  ->  (
( x  =  A  ->  B  =  C )  <->  ( y  =  A  ->  [_ y  /  x ]_ B  =  C ) ) )
11 csbhypf.3 . 2  |-  ( x  =  A  ->  B  =  C )
126, 10, 11chvar 1781 1  |-  ( y  =  A  ->  [_ y  /  x ]_ B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   F/_wnfc 2336   [_csb 3097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-sbc 3003  df-csb 3098
This theorem is referenced by:  disji2  4043  tfisi  4643
  Copyright terms: Public domain W3C validator