| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disji2 | Unicode version | ||
| Description: Property of a disjoint
collection: if |
| Ref | Expression |
|---|---|
| disji.1 |
|
| disji.2 |
|
| Ref | Expression |
|---|---|
| disji2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjnims 4074 |
. . 3
| |
| 2 | neeq1 2413 |
. . . . 5
| |
| 3 | nfcv 2372 |
. . . . . . . 8
| |
| 4 | nfcv 2372 |
. . . . . . . 8
| |
| 5 | disji.1 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | csbhypf 3163 |
. . . . . . 7
|
| 7 | 6 | ineq1d 3404 |
. . . . . 6
|
| 8 | 7 | eqeq1d 2238 |
. . . . 5
|
| 9 | 2, 8 | imbi12d 234 |
. . . 4
|
| 10 | neeq2 2414 |
. . . . 5
| |
| 11 | nfcv 2372 |
. . . . . . . 8
| |
| 12 | nfcv 2372 |
. . . . . . . 8
| |
| 13 | disji.2 |
. . . . . . . 8
| |
| 14 | 11, 12, 13 | csbhypf 3163 |
. . . . . . 7
|
| 15 | 14 | ineq2d 3405 |
. . . . . 6
|
| 16 | 15 | eqeq1d 2238 |
. . . . 5
|
| 17 | 10, 16 | imbi12d 234 |
. . . 4
|
| 18 | 9, 17 | rspc2v 2920 |
. . 3
|
| 19 | 1, 18 | mpan9 281 |
. 2
|
| 20 | 19 | 3impia 1224 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-in 3203 df-nul 3492 df-disj 4060 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |