ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disji2 Unicode version

Theorem disji2 4075
Description: Property of a disjoint collection: if  B ( X )  =  C and  B ( Y )  =  D, and  X  =/=  Y, then  C and  D are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disji.1  |-  ( x  =  X  ->  B  =  C )
disji.2  |-  ( x  =  Y  ->  B  =  D )
Assertion
Ref Expression
disji2  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
)  /\  X  =/=  Y )  ->  ( C  i^i  D )  =  (/) )
Distinct variable groups:    x, A    x, C    x, D    x, X    x, Y
Allowed substitution hint:    B( x)

Proof of Theorem disji2
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjnims 4074 . . 3  |-  (Disj  x  e.  A  B  ->  A. y  e.  A  A. z  e.  A  (
y  =/=  z  -> 
( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
2 neeq1 2413 . . . . 5  |-  ( y  =  X  ->  (
y  =/=  z  <->  X  =/=  z ) )
3 nfcv 2372 . . . . . . . 8  |-  F/_ x X
4 nfcv 2372 . . . . . . . 8  |-  F/_ x C
5 disji.1 . . . . . . . 8  |-  ( x  =  X  ->  B  =  C )
63, 4, 5csbhypf 3163 . . . . . . 7  |-  ( y  =  X  ->  [_ y  /  x ]_ B  =  C )
76ineq1d 3404 . . . . . 6  |-  ( y  =  X  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  ( C  i^i  [_ z  /  x ]_ B ) )
87eqeq1d 2238 . . . . 5  |-  ( y  =  X  ->  (
( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/)  <->  ( C  i^i  [_ z  /  x ]_ B )  =  (/) ) )
92, 8imbi12d 234 . . . 4  |-  ( y  =  X  ->  (
( y  =/=  z  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )  <->  ( X  =/=  z  ->  ( C  i^i  [_ z  /  x ]_ B )  =  (/) ) ) )
10 neeq2 2414 . . . . 5  |-  ( z  =  Y  ->  ( X  =/=  z  <->  X  =/=  Y ) )
11 nfcv 2372 . . . . . . . 8  |-  F/_ x Y
12 nfcv 2372 . . . . . . . 8  |-  F/_ x D
13 disji.2 . . . . . . . 8  |-  ( x  =  Y  ->  B  =  D )
1411, 12, 13csbhypf 3163 . . . . . . 7  |-  ( z  =  Y  ->  [_ z  /  x ]_ B  =  D )
1514ineq2d 3405 . . . . . 6  |-  ( z  =  Y  ->  ( C  i^i  [_ z  /  x ]_ B )  =  ( C  i^i  D ) )
1615eqeq1d 2238 . . . . 5  |-  ( z  =  Y  ->  (
( C  i^i  [_ z  /  x ]_ B )  =  (/)  <->  ( C  i^i  D )  =  (/) ) )
1710, 16imbi12d 234 . . . 4  |-  ( z  =  Y  ->  (
( X  =/=  z  ->  ( C  i^i  [_ z  /  x ]_ B )  =  (/) )  <->  ( X  =/=  Y  ->  ( C  i^i  D )  =  (/) ) ) )
189, 17rspc2v 2920 . . 3  |-  ( ( X  e.  A  /\  Y  e.  A )  ->  ( A. y  e.  A  A. z  e.  A  ( y  =/=  z  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )  ->  ( X  =/= 
Y  ->  ( C  i^i  D )  =  (/) ) ) )
191, 18mpan9 281 . 2  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
) )  ->  ( X  =/=  Y  ->  ( C  i^i  D )  =  (/) ) )
20193impia 1224 1  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
)  /\  X  =/=  Y )  ->  ( C  i^i  D )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   [_csb 3124    i^i cin 3196   (/)c0 3491  Disj wdisj 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-in 3203  df-nul 3492  df-disj 4060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator