| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disji2 | Unicode version | ||
| Description: Property of a disjoint
collection: if |
| Ref | Expression |
|---|---|
| disji.1 |
|
| disji.2 |
|
| Ref | Expression |
|---|---|
| disji2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjnims 4026 |
. . 3
| |
| 2 | neeq1 2380 |
. . . . 5
| |
| 3 | nfcv 2339 |
. . . . . . . 8
| |
| 4 | nfcv 2339 |
. . . . . . . 8
| |
| 5 | disji.1 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | csbhypf 3123 |
. . . . . . 7
|
| 7 | 6 | ineq1d 3364 |
. . . . . 6
|
| 8 | 7 | eqeq1d 2205 |
. . . . 5
|
| 9 | 2, 8 | imbi12d 234 |
. . . 4
|
| 10 | neeq2 2381 |
. . . . 5
| |
| 11 | nfcv 2339 |
. . . . . . . 8
| |
| 12 | nfcv 2339 |
. . . . . . . 8
| |
| 13 | disji.2 |
. . . . . . . 8
| |
| 14 | 11, 12, 13 | csbhypf 3123 |
. . . . . . 7
|
| 15 | 14 | ineq2d 3365 |
. . . . . 6
|
| 16 | 15 | eqeq1d 2205 |
. . . . 5
|
| 17 | 10, 16 | imbi12d 234 |
. . . 4
|
| 18 | 9, 17 | rspc2v 2881 |
. . 3
|
| 19 | 1, 18 | mpan9 281 |
. 2
|
| 20 | 19 | 3impia 1202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-in 3163 df-nul 3452 df-disj 4012 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |