Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disji2 | Unicode version |
Description: Property of a disjoint collection: if and , and , then and are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disji.1 | |
disji.2 |
Ref | Expression |
---|---|
disji2 | Disj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjnims 3957 | . . 3 Disj | |
2 | neeq1 2340 | . . . . 5 | |
3 | nfcv 2299 | . . . . . . . 8 | |
4 | nfcv 2299 | . . . . . . . 8 | |
5 | disji.1 | . . . . . . . 8 | |
6 | 3, 4, 5 | csbhypf 3069 | . . . . . . 7 |
7 | 6 | ineq1d 3307 | . . . . . 6 |
8 | 7 | eqeq1d 2166 | . . . . 5 |
9 | 2, 8 | imbi12d 233 | . . . 4 |
10 | neeq2 2341 | . . . . 5 | |
11 | nfcv 2299 | . . . . . . . 8 | |
12 | nfcv 2299 | . . . . . . . 8 | |
13 | disji.2 | . . . . . . . 8 | |
14 | 11, 12, 13 | csbhypf 3069 | . . . . . . 7 |
15 | 14 | ineq2d 3308 | . . . . . 6 |
16 | 15 | eqeq1d 2166 | . . . . 5 |
17 | 10, 16 | imbi12d 233 | . . . 4 |
18 | 9, 17 | rspc2v 2829 | . . 3 |
19 | 1, 18 | mpan9 279 | . 2 Disj |
20 | 19 | 3impia 1182 | 1 Disj |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wceq 1335 wcel 2128 wne 2327 wral 2435 csb 3031 cin 3101 c0 3394 Disj wdisj 3942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-in 3108 df-nul 3395 df-disj 3943 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |