ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disji2 Unicode version

Theorem disji2 4026
Description: Property of a disjoint collection: if  B ( X )  =  C and  B ( Y )  =  D, and  X  =/=  Y, then  C and  D are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disji.1  |-  ( x  =  X  ->  B  =  C )
disji.2  |-  ( x  =  Y  ->  B  =  D )
Assertion
Ref Expression
disji2  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
)  /\  X  =/=  Y )  ->  ( C  i^i  D )  =  (/) )
Distinct variable groups:    x, A    x, C    x, D    x, X    x, Y
Allowed substitution hint:    B( x)

Proof of Theorem disji2
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjnims 4025 . . 3  |-  (Disj  x  e.  A  B  ->  A. y  e.  A  A. z  e.  A  (
y  =/=  z  -> 
( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
2 neeq1 2380 . . . . 5  |-  ( y  =  X  ->  (
y  =/=  z  <->  X  =/=  z ) )
3 nfcv 2339 . . . . . . . 8  |-  F/_ x X
4 nfcv 2339 . . . . . . . 8  |-  F/_ x C
5 disji.1 . . . . . . . 8  |-  ( x  =  X  ->  B  =  C )
63, 4, 5csbhypf 3123 . . . . . . 7  |-  ( y  =  X  ->  [_ y  /  x ]_ B  =  C )
76ineq1d 3363 . . . . . 6  |-  ( y  =  X  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  ( C  i^i  [_ z  /  x ]_ B ) )
87eqeq1d 2205 . . . . 5  |-  ( y  =  X  ->  (
( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/)  <->  ( C  i^i  [_ z  /  x ]_ B )  =  (/) ) )
92, 8imbi12d 234 . . . 4  |-  ( y  =  X  ->  (
( y  =/=  z  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )  <->  ( X  =/=  z  ->  ( C  i^i  [_ z  /  x ]_ B )  =  (/) ) ) )
10 neeq2 2381 . . . . 5  |-  ( z  =  Y  ->  ( X  =/=  z  <->  X  =/=  Y ) )
11 nfcv 2339 . . . . . . . 8  |-  F/_ x Y
12 nfcv 2339 . . . . . . . 8  |-  F/_ x D
13 disji.2 . . . . . . . 8  |-  ( x  =  Y  ->  B  =  D )
1411, 12, 13csbhypf 3123 . . . . . . 7  |-  ( z  =  Y  ->  [_ z  /  x ]_ B  =  D )
1514ineq2d 3364 . . . . . 6  |-  ( z  =  Y  ->  ( C  i^i  [_ z  /  x ]_ B )  =  ( C  i^i  D ) )
1615eqeq1d 2205 . . . . 5  |-  ( z  =  Y  ->  (
( C  i^i  [_ z  /  x ]_ B )  =  (/)  <->  ( C  i^i  D )  =  (/) ) )
1710, 16imbi12d 234 . . . 4  |-  ( z  =  Y  ->  (
( X  =/=  z  ->  ( C  i^i  [_ z  /  x ]_ B )  =  (/) )  <->  ( X  =/=  Y  ->  ( C  i^i  D )  =  (/) ) ) )
189, 17rspc2v 2881 . . 3  |-  ( ( X  e.  A  /\  Y  e.  A )  ->  ( A. y  e.  A  A. z  e.  A  ( y  =/=  z  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )  ->  ( X  =/= 
Y  ->  ( C  i^i  D )  =  (/) ) ) )
191, 18mpan9 281 . 2  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
) )  ->  ( X  =/=  Y  ->  ( C  i^i  D )  =  (/) ) )
20193impia 1202 1  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
)  /\  X  =/=  Y )  ->  ( C  i^i  D )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   [_csb 3084    i^i cin 3156   (/)c0 3450  Disj wdisj 4010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-in 3163  df-nul 3451  df-disj 4011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator