ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disji2 Unicode version

Theorem disji2 3998
Description: Property of a disjoint collection: if  B ( X )  =  C and  B ( Y )  =  D, and  X  =/=  Y, then  C and  D are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disji.1  |-  ( x  =  X  ->  B  =  C )
disji.2  |-  ( x  =  Y  ->  B  =  D )
Assertion
Ref Expression
disji2  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
)  /\  X  =/=  Y )  ->  ( C  i^i  D )  =  (/) )
Distinct variable groups:    x, A    x, C    x, D    x, X    x, Y
Allowed substitution hint:    B( x)

Proof of Theorem disji2
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjnims 3997 . . 3  |-  (Disj  x  e.  A  B  ->  A. y  e.  A  A. z  e.  A  (
y  =/=  z  -> 
( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
2 neeq1 2360 . . . . 5  |-  ( y  =  X  ->  (
y  =/=  z  <->  X  =/=  z ) )
3 nfcv 2319 . . . . . . . 8  |-  F/_ x X
4 nfcv 2319 . . . . . . . 8  |-  F/_ x C
5 disji.1 . . . . . . . 8  |-  ( x  =  X  ->  B  =  C )
63, 4, 5csbhypf 3097 . . . . . . 7  |-  ( y  =  X  ->  [_ y  /  x ]_ B  =  C )
76ineq1d 3337 . . . . . 6  |-  ( y  =  X  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  ( C  i^i  [_ z  /  x ]_ B ) )
87eqeq1d 2186 . . . . 5  |-  ( y  =  X  ->  (
( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/)  <->  ( C  i^i  [_ z  /  x ]_ B )  =  (/) ) )
92, 8imbi12d 234 . . . 4  |-  ( y  =  X  ->  (
( y  =/=  z  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )  <->  ( X  =/=  z  ->  ( C  i^i  [_ z  /  x ]_ B )  =  (/) ) ) )
10 neeq2 2361 . . . . 5  |-  ( z  =  Y  ->  ( X  =/=  z  <->  X  =/=  Y ) )
11 nfcv 2319 . . . . . . . 8  |-  F/_ x Y
12 nfcv 2319 . . . . . . . 8  |-  F/_ x D
13 disji.2 . . . . . . . 8  |-  ( x  =  Y  ->  B  =  D )
1411, 12, 13csbhypf 3097 . . . . . . 7  |-  ( z  =  Y  ->  [_ z  /  x ]_ B  =  D )
1514ineq2d 3338 . . . . . 6  |-  ( z  =  Y  ->  ( C  i^i  [_ z  /  x ]_ B )  =  ( C  i^i  D ) )
1615eqeq1d 2186 . . . . 5  |-  ( z  =  Y  ->  (
( C  i^i  [_ z  /  x ]_ B )  =  (/)  <->  ( C  i^i  D )  =  (/) ) )
1710, 16imbi12d 234 . . . 4  |-  ( z  =  Y  ->  (
( X  =/=  z  ->  ( C  i^i  [_ z  /  x ]_ B )  =  (/) )  <->  ( X  =/=  Y  ->  ( C  i^i  D )  =  (/) ) ) )
189, 17rspc2v 2856 . . 3  |-  ( ( X  e.  A  /\  Y  e.  A )  ->  ( A. y  e.  A  A. z  e.  A  ( y  =/=  z  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )  ->  ( X  =/= 
Y  ->  ( C  i^i  D )  =  (/) ) ) )
191, 18mpan9 281 . 2  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
) )  ->  ( X  =/=  Y  ->  ( C  i^i  D )  =  (/) ) )
20193impia 1200 1  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
)  /\  X  =/=  Y )  ->  ( C  i^i  D )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   [_csb 3059    i^i cin 3130   (/)c0 3424  Disj wdisj 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-in 3137  df-nul 3425  df-disj 3983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator