ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmdc Unicode version

Theorem prmdc 12452
Description: Primality is decidable. (Contributed by Jim Kingdon, 30-Sep-2024.)
Assertion
Ref Expression
prmdc  |-  ( N  e.  NN  -> DECID  N  e.  Prime )

Proof of Theorem prmdc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 1nuz2 9727 . . . . . . 7  |-  -.  1  e.  ( ZZ>= `  2 )
2 eleq1 2268 . . . . . . 7  |-  ( N  =  1  ->  ( N  e.  ( ZZ>= ` 
2 )  <->  1  e.  ( ZZ>= `  2 )
) )
31, 2mtbiri 677 . . . . . 6  |-  ( N  =  1  ->  -.  N  e.  ( ZZ>= ` 
2 ) )
43orim1i 762 . . . . 5  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  -> 
( -.  N  e.  ( ZZ>= `  2 )  \/  N  e.  ( ZZ>=
`  2 ) ) )
54orcomd 731 . . . 4  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  -> 
( N  e.  (
ZZ>= `  2 )  \/ 
-.  N  e.  (
ZZ>= `  2 ) ) )
6 elnn1uz2 9728 . . . 4  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
7 df-dc 837 . . . 4  |-  (DECID  N  e.  ( ZZ>= `  2 )  <->  ( N  e.  ( ZZ>= ` 
2 )  \/  -.  N  e.  ( ZZ>= ` 
2 ) ) )
85, 6, 73imtr4i 201 . . 3  |-  ( N  e.  NN  -> DECID  N  e.  ( ZZ>=
`  2 ) )
9 2z 9400 . . . . . 6  |-  2  e.  ZZ
109a1i 9 . . . . 5  |-  ( N  e.  NN  ->  2  e.  ZZ )
11 nnz 9391 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
12 peano2zm 9410 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
1311, 12syl 14 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ZZ )
1410, 13fzfigd 10576 . . . 4  |-  ( N  e.  NN  ->  (
2 ... ( N  - 
1 ) )  e. 
Fin )
15 elfzelz 10147 . . . . . . . . 9  |-  ( x  e.  ( 2 ... ( N  -  1 ) )  ->  x  e.  ZZ )
1615adantl 277 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  ( 2 ... ( N  - 
1 ) ) )  ->  x  e.  ZZ )
17 1red 8087 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  ( 2 ... ( N  - 
1 ) ) )  ->  1  e.  RR )
18 2re 9106 . . . . . . . . . 10  |-  2  e.  RR
1918a1i 9 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  ( 2 ... ( N  - 
1 ) ) )  ->  2  e.  RR )
2016zred 9495 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  ( 2 ... ( N  - 
1 ) ) )  ->  x  e.  RR )
21 1le2 9245 . . . . . . . . . 10  |-  1  <_  2
2221a1i 9 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  ( 2 ... ( N  - 
1 ) ) )  ->  1  <_  2
)
23 elfzle1 10149 . . . . . . . . . 10  |-  ( x  e.  ( 2 ... ( N  -  1 ) )  ->  2  <_  x )
2423adantl 277 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  x  e.  ( 2 ... ( N  - 
1 ) ) )  ->  2  <_  x
)
2517, 19, 20, 22, 24letrd 8196 . . . . . . . 8  |-  ( ( N  e.  NN  /\  x  e.  ( 2 ... ( N  - 
1 ) ) )  ->  1  <_  x
)
26 elnnz1 9395 . . . . . . . 8  |-  ( x  e.  NN  <->  ( x  e.  ZZ  /\  1  <_  x ) )
2716, 25, 26sylanbrc 417 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  ( 2 ... ( N  - 
1 ) ) )  ->  x  e.  NN )
2811adantr 276 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  ( 2 ... ( N  - 
1 ) ) )  ->  N  e.  ZZ )
29 dvdsdc 12109 . . . . . . 7  |-  ( ( x  e.  NN  /\  N  e.  ZZ )  -> DECID  x 
||  N )
3027, 28, 29syl2anc 411 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  ( 2 ... ( N  - 
1 ) ) )  -> DECID 
x  ||  N )
31 dcn 844 . . . . . 6  |-  (DECID  x  ||  N  -> DECID  -.  x  ||  N )
3230, 31syl 14 . . . . 5  |-  ( ( N  e.  NN  /\  x  e.  ( 2 ... ( N  - 
1 ) ) )  -> DECID  -.  x  ||  N )
3332ralrimiva 2579 . . . 4  |-  ( N  e.  NN  ->  A. x  e.  ( 2 ... ( N  -  1 ) )DECID  -.  x  ||  N
)
34 dcfi 7083 . . . 4  |-  ( ( ( 2 ... ( N  -  1 ) )  e.  Fin  /\  A. x  e.  ( 2 ... ( N  - 
1 ) )DECID  -.  x  ||  N )  -> DECID  A. x  e.  ( 2 ... ( N  -  1 ) )  -.  x  ||  N
)
3514, 33, 34syl2anc 411 . . 3  |-  ( N  e.  NN  -> DECID  A. x  e.  ( 2 ... ( N  -  1 ) )  -.  x  ||  N
)
368, 35dcand 935 . 2  |-  ( N  e.  NN  -> DECID  ( N  e.  (
ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( N  - 
1 ) )  -.  x  ||  N ) )
37 isprm3 12440 . . 3  |-  ( N  e.  Prime  <->  ( N  e.  ( ZZ>= `  2 )  /\  A. x  e.  ( 2 ... ( N  -  1 ) )  -.  x  ||  N
) )
3837dcbii 842 . 2  |-  (DECID  N  e. 
Prime 
<-> DECID  ( N  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ( 2 ... ( N  - 
1 ) )  -.  x  ||  N ) )
3936, 38sylibr 134 1  |-  ( N  e.  NN  -> DECID  N  e.  Prime )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2176   A.wral 2484   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   Fincfn 6827   RRcr 7924   1c1 7926    <_ cle 8108    - cmin 8243   NNcn 9036   2c2 9087   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130    || cdvds 12098   Primecprime 12429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-2o 6503  df-er 6620  df-en 6828  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-prm 12430
This theorem is referenced by:  pcmptcl  12665  pcmpt  12666  1arith  12690  prminf  12826  lgsval  15481  lgsfvalg  15482  lgsfcl2  15483  lgsval2lem  15487  lgsval4lem  15488  lgsneg  15501  lgsmod  15503  lgsdir  15512  lgsdilem2  15513  lgsdi  15514  lgsne0  15515
  Copyright terms: Public domain W3C validator