ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemcl Unicode version

Theorem nninfdclemcl 12608
Description: Lemma for nninfdc 12613. (Contributed by Jim Kingdon, 25-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemcl.p  |-  ( ph  ->  P  e.  A )
nninfdclemcl.q  |-  ( ph  ->  Q  e.  A )
Assertion
Ref Expression
nninfdclemcl  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  e.  A )
Distinct variable groups:    x, A    y, A, z    A, m, n   
x, P    P, m, n    y, P, z    y, Q, z    m, n
Allowed substitution hints:    ph( x, y, z, m, n)    Q( x, m, n)

Proof of Theorem nninfdclemcl
Dummy variables  r  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4  |-  ( ph  ->  A  C_  NN )
2 nninfdclemcl.p . . . 4  |-  ( ph  ->  P  e.  A )
31, 2sseldd 3181 . . 3  |-  ( ph  ->  P  e.  NN )
4 nninfdclemcl.q . . . 4  |-  ( ph  ->  Q  e.  A )
51, 4sseldd 3181 . . 3  |-  ( ph  ->  Q  e.  NN )
6 inss1 3380 . . . . . 6  |-  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  C_  A
76, 1sstrid 3191 . . . . 5  |-  ( ph  ->  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) 
C_  NN )
8 eleq1 2256 . . . . . . . . . . 11  |-  ( x  =  s  ->  (
x  e.  A  <->  s  e.  A ) )
98dcbid 839 . . . . . . . . . 10  |-  ( x  =  s  ->  (DECID  x  e.  A  <-> DECID  s  e.  A )
)
10 nninfdclemf.dc . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
1110adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  A. x  e.  NN DECID  x  e.  A )
12 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  s  e.  NN )
139, 11, 12rspcdva 2870 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  A
)
143adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  NN )  ->  P  e.  NN )
1514nnzd 9441 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  NN )  ->  P  e.  ZZ )
1615peano2zd 9445 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  ( P  +  1 )  e.  ZZ )
1712nnzd 9441 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  s  e.  ZZ )
18 eluzdc 9678 . . . . . . . . . 10  |-  ( ( ( P  +  1 )  e.  ZZ  /\  s  e.  ZZ )  -> DECID  s  e.  ( ZZ>= `  ( P  +  1 ) ) )
1916, 17, 18syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  ( ZZ>=
`  ( P  + 
1 ) ) )
2013, 19dcand 934 . . . . . . . 8  |-  ( (
ph  /\  s  e.  NN )  -> DECID  ( s  e.  A  /\  s  e.  ( ZZ>=
`  ( P  + 
1 ) ) ) )
21 elin 3343 . . . . . . . . 9  |-  ( s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  ( s  e.  A  /\  s  e.  ( ZZ>= `  ( P  +  1 ) ) ) )
2221dcbii 841 . . . . . . . 8  |-  (DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) )  <-> DECID  (
s  e.  A  /\  s  e.  ( ZZ>= `  ( P  +  1
) ) ) )
2320, 22sylibr 134 . . . . . . 7  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
2423ralrimiva 2567 . . . . . 6  |-  ( ph  ->  A. s  e.  NN DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
25 eleq1 2256 . . . . . . . 8  |-  ( s  =  x  ->  (
s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ) )
2625dcbid 839 . . . . . . 7  |-  ( s  =  x  ->  (DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) )  <-> DECID  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ) )
2726cbvralvw 2730 . . . . . 6  |-  ( A. s  e.  NN DECID  s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
2824, 27sylib 122 . . . . 5  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
29 breq1 4033 . . . . . . . . 9  |-  ( m  =  P  ->  (
m  <  n  <->  P  <  n ) )
3029rexbidv 2495 . . . . . . . 8  |-  ( m  =  P  ->  ( E. n  e.  A  m  <  n  <->  E. n  e.  A  P  <  n ) )
31 nninfdclemf.nb . . . . . . . 8  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
3230, 31, 3rspcdva 2870 . . . . . . 7  |-  ( ph  ->  E. n  e.  A  P  <  n )
33 breq2 4034 . . . . . . . 8  |-  ( n  =  t  ->  ( P  <  n  <->  P  <  t ) )
3433cbvrexvw 2731 . . . . . . 7  |-  ( E. n  e.  A  P  <  n  <->  E. t  e.  A  P  <  t )
3532, 34sylib 122 . . . . . 6  |-  ( ph  ->  E. t  e.  A  P  <  t )
36 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  A )
373nnzd 9441 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ZZ )
3837peano2zd 9445 . . . . . . . . . 10  |-  ( ph  ->  ( P  +  1 )  e.  ZZ )
3938adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  +  1 )  e.  ZZ )
401adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  A  C_  NN )
4140, 36sseldd 3181 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  NN )
4241nnzd 9441 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ZZ )
43 simprr 531 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  P  <  t )
44 nnltp1le 9380 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  t  e.  NN )  ->  ( P  <  t  <->  ( P  +  1 )  <_  t ) )
453, 41, 44syl2an2r 595 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  <  t  <->  ( P  +  1 )  <_  t ) )
4643, 45mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  +  1 )  <_  t )
47 eluz2 9601 . . . . . . . . 9  |-  ( t  e.  ( ZZ>= `  ( P  +  1 ) )  <->  ( ( P  +  1 )  e.  ZZ  /\  t  e.  ZZ  /\  ( P  +  1 )  <_ 
t ) )
4839, 42, 46, 47syl3anbrc 1183 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ( ZZ>= `  ( P  +  1
) ) )
4936, 48elind 3345 . . . . . . 7  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
50 elex2 2776 . . . . . . 7  |-  ( t  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  ->  E. r 
r  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
5149, 50syl 14 . . . . . 6  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  E. r  r  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
5235, 51rexlimddv 2616 . . . . 5  |-  ( ph  ->  E. r  r  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
53 nnmindc 12174 . . . . 5  |-  ( ( ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) 
C_  NN  /\  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  /\  E. r  r  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
547, 28, 52, 53syl3anc 1249 . . . 4  |-  ( ph  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
5554elin1d 3349 . . 3  |-  ( ph  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  A )
56 fvoveq1 5942 . . . . . 6  |-  ( y  =  P  ->  ( ZZ>=
`  ( y  +  1 ) )  =  ( ZZ>= `  ( P  +  1 ) ) )
5756ineq2d 3361 . . . . 5  |-  ( y  =  P  ->  ( A  i^i  ( ZZ>= `  (
y  +  1 ) ) )  =  ( A  i^i  ( ZZ>= `  ( P  +  1
) ) ) )
5857infeq1d 7073 . . . 4  |-  ( y  =  P  -> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
59 eqidd 2194 . . . 4  |-  ( z  =  Q  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1
) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
60 eqid 2193 . . . 4  |-  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)
6158, 59, 60ovmpog 6054 . . 3  |-  ( ( P  e.  NN  /\  Q  e.  NN  /\ inf (
( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ,  RR ,  <  )  e.  A )  -> 
( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
623, 5, 55, 61syl3anc 1249 . 2  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
6362, 55eqeltrd 2270 1  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473    i^i cin 3153    C_ wss 3154   class class class wbr 4030   ` cfv 5255  (class class class)co 5919    e. cmpo 5921  infcinf 7044   RRcr 7873   1c1 7875    + caddc 7877    < clt 8056    <_ cle 8057   NNcn 8984   ZZcz 9320   ZZ>=cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212
This theorem is referenced by:  nninfdclemf  12609  nninfdclemp1  12610
  Copyright terms: Public domain W3C validator