| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfdclemcl | Unicode version | ||
| Description: Lemma for nninfdc 12670. (Contributed by Jim Kingdon, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| nninfdclemf.a |
|
| nninfdclemf.dc |
|
| nninfdclemf.nb |
|
| nninfdclemcl.p |
|
| nninfdclemcl.q |
|
| Ref | Expression |
|---|---|
| nninfdclemcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfdclemf.a |
. . . 4
| |
| 2 | nninfdclemcl.p |
. . . 4
| |
| 3 | 1, 2 | sseldd 3184 |
. . 3
|
| 4 | nninfdclemcl.q |
. . . 4
| |
| 5 | 1, 4 | sseldd 3184 |
. . 3
|
| 6 | inss1 3383 |
. . . . . 6
| |
| 7 | 6, 1 | sstrid 3194 |
. . . . 5
|
| 8 | eleq1 2259 |
. . . . . . . . . . 11
| |
| 9 | 8 | dcbid 839 |
. . . . . . . . . 10
|
| 10 | nninfdclemf.dc |
. . . . . . . . . . 11
| |
| 11 | 10 | adantr 276 |
. . . . . . . . . 10
|
| 12 | simpr 110 |
. . . . . . . . . 10
| |
| 13 | 9, 11, 12 | rspcdva 2873 |
. . . . . . . . 9
|
| 14 | 3 | adantr 276 |
. . . . . . . . . . . 12
|
| 15 | 14 | nnzd 9447 |
. . . . . . . . . . 11
|
| 16 | 15 | peano2zd 9451 |
. . . . . . . . . 10
|
| 17 | 12 | nnzd 9447 |
. . . . . . . . . 10
|
| 18 | eluzdc 9684 |
. . . . . . . . . 10
| |
| 19 | 16, 17, 18 | syl2anc 411 |
. . . . . . . . 9
|
| 20 | 13, 19 | dcand 934 |
. . . . . . . 8
|
| 21 | elin 3346 |
. . . . . . . . 9
| |
| 22 | 21 | dcbii 841 |
. . . . . . . 8
|
| 23 | 20, 22 | sylibr 134 |
. . . . . . 7
|
| 24 | 23 | ralrimiva 2570 |
. . . . . 6
|
| 25 | eleq1 2259 |
. . . . . . . 8
| |
| 26 | 25 | dcbid 839 |
. . . . . . 7
|
| 27 | 26 | cbvralvw 2733 |
. . . . . 6
|
| 28 | 24, 27 | sylib 122 |
. . . . 5
|
| 29 | breq1 4036 |
. . . . . . . . 9
| |
| 30 | 29 | rexbidv 2498 |
. . . . . . . 8
|
| 31 | nninfdclemf.nb |
. . . . . . . 8
| |
| 32 | 30, 31, 3 | rspcdva 2873 |
. . . . . . 7
|
| 33 | breq2 4037 |
. . . . . . . 8
| |
| 34 | 33 | cbvrexvw 2734 |
. . . . . . 7
|
| 35 | 32, 34 | sylib 122 |
. . . . . 6
|
| 36 | simprl 529 |
. . . . . . . 8
| |
| 37 | 3 | nnzd 9447 |
. . . . . . . . . . 11
|
| 38 | 37 | peano2zd 9451 |
. . . . . . . . . 10
|
| 39 | 38 | adantr 276 |
. . . . . . . . 9
|
| 40 | 1 | adantr 276 |
. . . . . . . . . . 11
|
| 41 | 40, 36 | sseldd 3184 |
. . . . . . . . . 10
|
| 42 | 41 | nnzd 9447 |
. . . . . . . . 9
|
| 43 | simprr 531 |
. . . . . . . . . 10
| |
| 44 | nnltp1le 9386 |
. . . . . . . . . . 11
| |
| 45 | 3, 41, 44 | syl2an2r 595 |
. . . . . . . . . 10
|
| 46 | 43, 45 | mpbid 147 |
. . . . . . . . 9
|
| 47 | eluz2 9607 |
. . . . . . . . 9
| |
| 48 | 39, 42, 46, 47 | syl3anbrc 1183 |
. . . . . . . 8
|
| 49 | 36, 48 | elind 3348 |
. . . . . . 7
|
| 50 | elex2 2779 |
. . . . . . 7
| |
| 51 | 49, 50 | syl 14 |
. . . . . 6
|
| 52 | 35, 51 | rexlimddv 2619 |
. . . . 5
|
| 53 | nnmindc 12201 |
. . . . 5
| |
| 54 | 7, 28, 52, 53 | syl3anc 1249 |
. . . 4
|
| 55 | 54 | elin1d 3352 |
. . 3
|
| 56 | fvoveq1 5945 |
. . . . . 6
| |
| 57 | 56 | ineq2d 3364 |
. . . . 5
|
| 58 | 57 | infeq1d 7078 |
. . . 4
|
| 59 | eqidd 2197 |
. . . 4
| |
| 60 | eqid 2196 |
. . . 4
| |
| 61 | 58, 59, 60 | ovmpog 6057 |
. . 3
|
| 62 | 3, 5, 55, 61 | syl3anc 1249 |
. 2
|
| 63 | 62, 55 | eqeltrd 2273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-fzo 10218 |
| This theorem is referenced by: nninfdclemf 12666 nninfdclemp1 12667 |
| Copyright terms: Public domain | W3C validator |