ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemcl Unicode version

Theorem nninfdclemcl 12605
Description: Lemma for nninfdc 12610. (Contributed by Jim Kingdon, 25-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemcl.p  |-  ( ph  ->  P  e.  A )
nninfdclemcl.q  |-  ( ph  ->  Q  e.  A )
Assertion
Ref Expression
nninfdclemcl  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  e.  A )
Distinct variable groups:    x, A    y, A, z    A, m, n   
x, P    P, m, n    y, P, z    y, Q, z    m, n
Allowed substitution hints:    ph( x, y, z, m, n)    Q( x, m, n)

Proof of Theorem nninfdclemcl
Dummy variables  r  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4  |-  ( ph  ->  A  C_  NN )
2 nninfdclemcl.p . . . 4  |-  ( ph  ->  P  e.  A )
31, 2sseldd 3180 . . 3  |-  ( ph  ->  P  e.  NN )
4 nninfdclemcl.q . . . 4  |-  ( ph  ->  Q  e.  A )
51, 4sseldd 3180 . . 3  |-  ( ph  ->  Q  e.  NN )
6 inss1 3379 . . . . . 6  |-  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  C_  A
76, 1sstrid 3190 . . . . 5  |-  ( ph  ->  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) 
C_  NN )
8 eleq1 2256 . . . . . . . . . . 11  |-  ( x  =  s  ->  (
x  e.  A  <->  s  e.  A ) )
98dcbid 839 . . . . . . . . . 10  |-  ( x  =  s  ->  (DECID  x  e.  A  <-> DECID  s  e.  A )
)
10 nninfdclemf.dc . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
1110adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  A. x  e.  NN DECID  x  e.  A )
12 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  s  e.  NN )
139, 11, 12rspcdva 2869 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  A
)
143adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  NN )  ->  P  e.  NN )
1514nnzd 9438 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  NN )  ->  P  e.  ZZ )
1615peano2zd 9442 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  ( P  +  1 )  e.  ZZ )
1712nnzd 9438 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  s  e.  ZZ )
18 eluzdc 9675 . . . . . . . . . 10  |-  ( ( ( P  +  1 )  e.  ZZ  /\  s  e.  ZZ )  -> DECID  s  e.  ( ZZ>= `  ( P  +  1 ) ) )
1916, 17, 18syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  ( ZZ>=
`  ( P  + 
1 ) ) )
2013, 19dcand 934 . . . . . . . 8  |-  ( (
ph  /\  s  e.  NN )  -> DECID  ( s  e.  A  /\  s  e.  ( ZZ>=
`  ( P  + 
1 ) ) ) )
21 elin 3342 . . . . . . . . 9  |-  ( s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  ( s  e.  A  /\  s  e.  ( ZZ>= `  ( P  +  1 ) ) ) )
2221dcbii 841 . . . . . . . 8  |-  (DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) )  <-> DECID  (
s  e.  A  /\  s  e.  ( ZZ>= `  ( P  +  1
) ) ) )
2320, 22sylibr 134 . . . . . . 7  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
2423ralrimiva 2567 . . . . . 6  |-  ( ph  ->  A. s  e.  NN DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
25 eleq1 2256 . . . . . . . 8  |-  ( s  =  x  ->  (
s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ) )
2625dcbid 839 . . . . . . 7  |-  ( s  =  x  ->  (DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) )  <-> DECID  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ) )
2726cbvralvw 2730 . . . . . 6  |-  ( A. s  e.  NN DECID  s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
2824, 27sylib 122 . . . . 5  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
29 breq1 4032 . . . . . . . . 9  |-  ( m  =  P  ->  (
m  <  n  <->  P  <  n ) )
3029rexbidv 2495 . . . . . . . 8  |-  ( m  =  P  ->  ( E. n  e.  A  m  <  n  <->  E. n  e.  A  P  <  n ) )
31 nninfdclemf.nb . . . . . . . 8  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
3230, 31, 3rspcdva 2869 . . . . . . 7  |-  ( ph  ->  E. n  e.  A  P  <  n )
33 breq2 4033 . . . . . . . 8  |-  ( n  =  t  ->  ( P  <  n  <->  P  <  t ) )
3433cbvrexvw 2731 . . . . . . 7  |-  ( E. n  e.  A  P  <  n  <->  E. t  e.  A  P  <  t )
3532, 34sylib 122 . . . . . 6  |-  ( ph  ->  E. t  e.  A  P  <  t )
36 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  A )
373nnzd 9438 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ZZ )
3837peano2zd 9442 . . . . . . . . . 10  |-  ( ph  ->  ( P  +  1 )  e.  ZZ )
3938adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  +  1 )  e.  ZZ )
401adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  A  C_  NN )
4140, 36sseldd 3180 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  NN )
4241nnzd 9438 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ZZ )
43 simprr 531 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  P  <  t )
44 nnltp1le 9377 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  t  e.  NN )  ->  ( P  <  t  <->  ( P  +  1 )  <_  t ) )
453, 41, 44syl2an2r 595 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  <  t  <->  ( P  +  1 )  <_  t ) )
4643, 45mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  +  1 )  <_  t )
47 eluz2 9598 . . . . . . . . 9  |-  ( t  e.  ( ZZ>= `  ( P  +  1 ) )  <->  ( ( P  +  1 )  e.  ZZ  /\  t  e.  ZZ  /\  ( P  +  1 )  <_ 
t ) )
4839, 42, 46, 47syl3anbrc 1183 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ( ZZ>= `  ( P  +  1
) ) )
4936, 48elind 3344 . . . . . . 7  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
50 elex2 2776 . . . . . . 7  |-  ( t  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  ->  E. r 
r  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
5149, 50syl 14 . . . . . 6  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  E. r  r  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
5235, 51rexlimddv 2616 . . . . 5  |-  ( ph  ->  E. r  r  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
53 nnmindc 12171 . . . . 5  |-  ( ( ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) 
C_  NN  /\  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  /\  E. r  r  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
547, 28, 52, 53syl3anc 1249 . . . 4  |-  ( ph  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
5554elin1d 3348 . . 3  |-  ( ph  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  A )
56 fvoveq1 5941 . . . . . 6  |-  ( y  =  P  ->  ( ZZ>=
`  ( y  +  1 ) )  =  ( ZZ>= `  ( P  +  1 ) ) )
5756ineq2d 3360 . . . . 5  |-  ( y  =  P  ->  ( A  i^i  ( ZZ>= `  (
y  +  1 ) ) )  =  ( A  i^i  ( ZZ>= `  ( P  +  1
) ) ) )
5857infeq1d 7071 . . . 4  |-  ( y  =  P  -> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
59 eqidd 2194 . . . 4  |-  ( z  =  Q  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1
) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
60 eqid 2193 . . . 4  |-  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)
6158, 59, 60ovmpog 6053 . . 3  |-  ( ( P  e.  NN  /\  Q  e.  NN  /\ inf (
( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ,  RR ,  <  )  e.  A )  -> 
( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
623, 5, 55, 61syl3anc 1249 . 2  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
6362, 55eqeltrd 2270 1  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473    i^i cin 3152    C_ wss 3153   class class class wbr 4029   ` cfv 5254  (class class class)co 5918    e. cmpo 5920  infcinf 7042   RRcr 7871   1c1 7873    + caddc 7875    < clt 8054    <_ cle 8055   NNcn 8982   ZZcz 9317   ZZ>=cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209
This theorem is referenced by:  nninfdclemf  12606  nninfdclemp1  12607
  Copyright terms: Public domain W3C validator