ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemcl Unicode version

Theorem nninfdclemcl 13019
Description: Lemma for nninfdc 13024. (Contributed by Jim Kingdon, 25-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemcl.p  |-  ( ph  ->  P  e.  A )
nninfdclemcl.q  |-  ( ph  ->  Q  e.  A )
Assertion
Ref Expression
nninfdclemcl  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  e.  A )
Distinct variable groups:    x, A    y, A, z    A, m, n   
x, P    P, m, n    y, P, z    y, Q, z    m, n
Allowed substitution hints:    ph( x, y, z, m, n)    Q( x, m, n)

Proof of Theorem nninfdclemcl
Dummy variables  r  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4  |-  ( ph  ->  A  C_  NN )
2 nninfdclemcl.p . . . 4  |-  ( ph  ->  P  e.  A )
31, 2sseldd 3225 . . 3  |-  ( ph  ->  P  e.  NN )
4 nninfdclemcl.q . . . 4  |-  ( ph  ->  Q  e.  A )
51, 4sseldd 3225 . . 3  |-  ( ph  ->  Q  e.  NN )
6 inss1 3424 . . . . . 6  |-  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  C_  A
76, 1sstrid 3235 . . . . 5  |-  ( ph  ->  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) 
C_  NN )
8 eleq1 2292 . . . . . . . . . . 11  |-  ( x  =  s  ->  (
x  e.  A  <->  s  e.  A ) )
98dcbid 843 . . . . . . . . . 10  |-  ( x  =  s  ->  (DECID  x  e.  A  <-> DECID  s  e.  A )
)
10 nninfdclemf.dc . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
1110adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  A. x  e.  NN DECID  x  e.  A )
12 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  s  e.  NN )
139, 11, 12rspcdva 2912 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  A
)
143adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  NN )  ->  P  e.  NN )
1514nnzd 9568 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  NN )  ->  P  e.  ZZ )
1615peano2zd 9572 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  ( P  +  1 )  e.  ZZ )
1712nnzd 9568 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  s  e.  ZZ )
18 eluzdc 9805 . . . . . . . . . 10  |-  ( ( ( P  +  1 )  e.  ZZ  /\  s  e.  ZZ )  -> DECID  s  e.  ( ZZ>= `  ( P  +  1 ) ) )
1916, 17, 18syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  ( ZZ>=
`  ( P  + 
1 ) ) )
2013, 19dcand 938 . . . . . . . 8  |-  ( (
ph  /\  s  e.  NN )  -> DECID  ( s  e.  A  /\  s  e.  ( ZZ>=
`  ( P  + 
1 ) ) ) )
21 elin 3387 . . . . . . . . 9  |-  ( s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  ( s  e.  A  /\  s  e.  ( ZZ>= `  ( P  +  1 ) ) ) )
2221dcbii 845 . . . . . . . 8  |-  (DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) )  <-> DECID  (
s  e.  A  /\  s  e.  ( ZZ>= `  ( P  +  1
) ) ) )
2320, 22sylibr 134 . . . . . . 7  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
2423ralrimiva 2603 . . . . . 6  |-  ( ph  ->  A. s  e.  NN DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
25 eleq1 2292 . . . . . . . 8  |-  ( s  =  x  ->  (
s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ) )
2625dcbid 843 . . . . . . 7  |-  ( s  =  x  ->  (DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) )  <-> DECID  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ) )
2726cbvralvw 2769 . . . . . 6  |-  ( A. s  e.  NN DECID  s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
2824, 27sylib 122 . . . . 5  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
29 breq1 4086 . . . . . . . . 9  |-  ( m  =  P  ->  (
m  <  n  <->  P  <  n ) )
3029rexbidv 2531 . . . . . . . 8  |-  ( m  =  P  ->  ( E. n  e.  A  m  <  n  <->  E. n  e.  A  P  <  n ) )
31 nninfdclemf.nb . . . . . . . 8  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
3230, 31, 3rspcdva 2912 . . . . . . 7  |-  ( ph  ->  E. n  e.  A  P  <  n )
33 breq2 4087 . . . . . . . 8  |-  ( n  =  t  ->  ( P  <  n  <->  P  <  t ) )
3433cbvrexvw 2770 . . . . . . 7  |-  ( E. n  e.  A  P  <  n  <->  E. t  e.  A  P  <  t )
3532, 34sylib 122 . . . . . 6  |-  ( ph  ->  E. t  e.  A  P  <  t )
36 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  A )
373nnzd 9568 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ZZ )
3837peano2zd 9572 . . . . . . . . . 10  |-  ( ph  ->  ( P  +  1 )  e.  ZZ )
3938adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  +  1 )  e.  ZZ )
401adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  A  C_  NN )
4140, 36sseldd 3225 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  NN )
4241nnzd 9568 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ZZ )
43 simprr 531 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  P  <  t )
44 nnltp1le 9507 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  t  e.  NN )  ->  ( P  <  t  <->  ( P  +  1 )  <_  t ) )
453, 41, 44syl2an2r 597 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  <  t  <->  ( P  +  1 )  <_  t ) )
4643, 45mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  +  1 )  <_  t )
47 eluz2 9728 . . . . . . . . 9  |-  ( t  e.  ( ZZ>= `  ( P  +  1 ) )  <->  ( ( P  +  1 )  e.  ZZ  /\  t  e.  ZZ  /\  ( P  +  1 )  <_ 
t ) )
4839, 42, 46, 47syl3anbrc 1205 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ( ZZ>= `  ( P  +  1
) ) )
4936, 48elind 3389 . . . . . . 7  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
50 elex2 2816 . . . . . . 7  |-  ( t  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  ->  E. r 
r  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
5149, 50syl 14 . . . . . 6  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  E. r  r  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
5235, 51rexlimddv 2653 . . . . 5  |-  ( ph  ->  E. r  r  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
53 nnmindc 12555 . . . . 5  |-  ( ( ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) 
C_  NN  /\  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  /\  E. r  r  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
547, 28, 52, 53syl3anc 1271 . . . 4  |-  ( ph  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
5554elin1d 3393 . . 3  |-  ( ph  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  A )
56 fvoveq1 6024 . . . . . 6  |-  ( y  =  P  ->  ( ZZ>=
`  ( y  +  1 ) )  =  ( ZZ>= `  ( P  +  1 ) ) )
5756ineq2d 3405 . . . . 5  |-  ( y  =  P  ->  ( A  i^i  ( ZZ>= `  (
y  +  1 ) ) )  =  ( A  i^i  ( ZZ>= `  ( P  +  1
) ) ) )
5857infeq1d 7179 . . . 4  |-  ( y  =  P  -> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
59 eqidd 2230 . . . 4  |-  ( z  =  Q  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1
) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
60 eqid 2229 . . . 4  |-  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)
6158, 59, 60ovmpog 6139 . . 3  |-  ( ( P  e.  NN  /\  Q  e.  NN  /\ inf (
( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ,  RR ,  <  )  e.  A )  -> 
( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
623, 5, 55, 61syl3anc 1271 . 2  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
6362, 55eqeltrd 2306 1  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509    i^i cin 3196    C_ wss 3197   class class class wbr 4083   ` cfv 5318  (class class class)co 6001    e. cmpo 6003  infcinf 7150   RRcr 7998   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182   NNcn 9110   ZZcz 9446   ZZ>=cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339
This theorem is referenced by:  nninfdclemf  13020  nninfdclemp1  13021
  Copyright terms: Public domain W3C validator