ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemcl Unicode version

Theorem nninfdclemcl 12390
Description: Lemma for nninfdc 12395. (Contributed by Jim Kingdon, 25-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemcl.p  |-  ( ph  ->  P  e.  A )
nninfdclemcl.q  |-  ( ph  ->  Q  e.  A )
Assertion
Ref Expression
nninfdclemcl  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  e.  A )
Distinct variable groups:    x, A    y, A, z    A, m, n   
x, P    P, m, n    y, P, z    y, Q, z    m, n
Allowed substitution hints:    ph( x, y, z, m, n)    Q( x, m, n)

Proof of Theorem nninfdclemcl
Dummy variables  r  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4  |-  ( ph  ->  A  C_  NN )
2 nninfdclemcl.p . . . 4  |-  ( ph  ->  P  e.  A )
31, 2sseldd 3148 . . 3  |-  ( ph  ->  P  e.  NN )
4 nninfdclemcl.q . . . 4  |-  ( ph  ->  Q  e.  A )
51, 4sseldd 3148 . . 3  |-  ( ph  ->  Q  e.  NN )
6 inss1 3347 . . . . . 6  |-  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  C_  A
76, 1sstrid 3158 . . . . 5  |-  ( ph  ->  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) 
C_  NN )
8 eleq1w 2231 . . . . . . . . . . 11  |-  ( x  =  s  ->  (
x  e.  A  <->  s  e.  A ) )
98dcbid 833 . . . . . . . . . 10  |-  ( x  =  s  ->  (DECID  x  e.  A  <-> DECID  s  e.  A )
)
10 nninfdclemf.dc . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
1110adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  A. x  e.  NN DECID  x  e.  A )
12 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  s  e.  NN )
139, 11, 12rspcdva 2839 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  A
)
143adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  NN )  ->  P  e.  NN )
1514nnzd 9320 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  NN )  ->  P  e.  ZZ )
1615peano2zd 9324 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  ( P  +  1 )  e.  ZZ )
1712nnzd 9320 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  s  e.  ZZ )
18 eluzdc 9556 . . . . . . . . . 10  |-  ( ( ( P  +  1 )  e.  ZZ  /\  s  e.  ZZ )  -> DECID  s  e.  ( ZZ>= `  ( P  +  1 ) ) )
1916, 17, 18syl2anc 409 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  ( ZZ>=
`  ( P  + 
1 ) ) )
20 dcan2 929 . . . . . . . . 9  |-  (DECID  s  e.  A  ->  (DECID  s  e.  ( ZZ>= `  ( P  +  1 ) )  -> DECID 
( s  e.  A  /\  s  e.  ( ZZ>=
`  ( P  + 
1 ) ) ) ) )
2113, 19, 20sylc 62 . . . . . . . 8  |-  ( (
ph  /\  s  e.  NN )  -> DECID  ( s  e.  A  /\  s  e.  ( ZZ>=
`  ( P  + 
1 ) ) ) )
22 elin 3310 . . . . . . . . 9  |-  ( s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  ( s  e.  A  /\  s  e.  ( ZZ>= `  ( P  +  1 ) ) ) )
2322dcbii 835 . . . . . . . 8  |-  (DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) )  <-> DECID  (
s  e.  A  /\  s  e.  ( ZZ>= `  ( P  +  1
) ) ) )
2421, 23sylibr 133 . . . . . . 7  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
2524ralrimiva 2543 . . . . . 6  |-  ( ph  ->  A. s  e.  NN DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
26 eleq1w 2231 . . . . . . . 8  |-  ( s  =  x  ->  (
s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ) )
2726dcbid 833 . . . . . . 7  |-  ( s  =  x  ->  (DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) )  <-> DECID  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ) )
2827cbvralv 2696 . . . . . 6  |-  ( A. s  e.  NN DECID  s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
2925, 28sylib 121 . . . . 5  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
30 breq1 3990 . . . . . . . . 9  |-  ( m  =  P  ->  (
m  <  n  <->  P  <  n ) )
3130rexbidv 2471 . . . . . . . 8  |-  ( m  =  P  ->  ( E. n  e.  A  m  <  n  <->  E. n  e.  A  P  <  n ) )
32 nninfdclemf.nb . . . . . . . 8  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
3331, 32, 3rspcdva 2839 . . . . . . 7  |-  ( ph  ->  E. n  e.  A  P  <  n )
34 breq2 3991 . . . . . . . 8  |-  ( n  =  t  ->  ( P  <  n  <->  P  <  t ) )
3534cbvrexv 2697 . . . . . . 7  |-  ( E. n  e.  A  P  <  n  <->  E. t  e.  A  P  <  t )
3633, 35sylib 121 . . . . . 6  |-  ( ph  ->  E. t  e.  A  P  <  t )
37 simprl 526 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  A )
383nnzd 9320 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ZZ )
3938peano2zd 9324 . . . . . . . . . 10  |-  ( ph  ->  ( P  +  1 )  e.  ZZ )
4039adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  +  1 )  e.  ZZ )
411adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  A  C_  NN )
4241, 37sseldd 3148 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  NN )
4342nnzd 9320 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ZZ )
44 simprr 527 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  P  <  t )
453adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  P  e.  NN )
46 nnltp1le 9259 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  t  e.  NN )  ->  ( P  <  t  <->  ( P  +  1 )  <_  t ) )
4745, 42, 46syl2anc 409 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  <  t  <->  ( P  +  1 )  <_  t ) )
4844, 47mpbid 146 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  +  1 )  <_  t )
49 eluz2 9480 . . . . . . . . 9  |-  ( t  e.  ( ZZ>= `  ( P  +  1 ) )  <->  ( ( P  +  1 )  e.  ZZ  /\  t  e.  ZZ  /\  ( P  +  1 )  <_ 
t ) )
5040, 43, 48, 49syl3anbrc 1176 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ( ZZ>= `  ( P  +  1
) ) )
5137, 50elind 3312 . . . . . . 7  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
52 elex2 2746 . . . . . . 7  |-  ( t  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  ->  E. r 
r  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
5351, 52syl 14 . . . . . 6  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  E. r  r  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
5436, 53rexlimddv 2592 . . . . 5  |-  ( ph  ->  E. r  r  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
55 nnmindc 11976 . . . . 5  |-  ( ( ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) 
C_  NN  /\  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  /\  E. r  r  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
567, 29, 54, 55syl3anc 1233 . . . 4  |-  ( ph  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
5756elin1d 3316 . . 3  |-  ( ph  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  A )
58 fvoveq1 5873 . . . . . 6  |-  ( y  =  P  ->  ( ZZ>=
`  ( y  +  1 ) )  =  ( ZZ>= `  ( P  +  1 ) ) )
5958ineq2d 3328 . . . . 5  |-  ( y  =  P  ->  ( A  i^i  ( ZZ>= `  (
y  +  1 ) ) )  =  ( A  i^i  ( ZZ>= `  ( P  +  1
) ) ) )
6059infeq1d 6985 . . . 4  |-  ( y  =  P  -> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
61 eqidd 2171 . . . 4  |-  ( z  =  Q  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1
) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
62 eqid 2170 . . . 4  |-  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)
6360, 61, 62ovmpog 5984 . . 3  |-  ( ( P  e.  NN  /\  Q  e.  NN  /\ inf (
( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ,  RR ,  <  )  e.  A )  -> 
( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
643, 5, 57, 63syl3anc 1233 . 2  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
6564, 57eqeltrd 2247 1  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 829    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   E.wrex 2449    i^i cin 3120    C_ wss 3121   class class class wbr 3987   ` cfv 5196  (class class class)co 5850    e. cmpo 5852  infcinf 6956   RRcr 7760   1c1 7762    + caddc 7764    < clt 7941    <_ cle 7942   NNcn 8865   ZZcz 9199   ZZ>=cuz 9474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-fz 9953  df-fzo 10086
This theorem is referenced by:  nninfdclemf  12391  nninfdclemp1  12392
  Copyright terms: Public domain W3C validator