ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemcl Unicode version

Theorem nninfdclemcl 12852
Description: Lemma for nninfdc 12857. (Contributed by Jim Kingdon, 25-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemcl.p  |-  ( ph  ->  P  e.  A )
nninfdclemcl.q  |-  ( ph  ->  Q  e.  A )
Assertion
Ref Expression
nninfdclemcl  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  e.  A )
Distinct variable groups:    x, A    y, A, z    A, m, n   
x, P    P, m, n    y, P, z    y, Q, z    m, n
Allowed substitution hints:    ph( x, y, z, m, n)    Q( x, m, n)

Proof of Theorem nninfdclemcl
Dummy variables  r  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4  |-  ( ph  ->  A  C_  NN )
2 nninfdclemcl.p . . . 4  |-  ( ph  ->  P  e.  A )
31, 2sseldd 3194 . . 3  |-  ( ph  ->  P  e.  NN )
4 nninfdclemcl.q . . . 4  |-  ( ph  ->  Q  e.  A )
51, 4sseldd 3194 . . 3  |-  ( ph  ->  Q  e.  NN )
6 inss1 3393 . . . . . 6  |-  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  C_  A
76, 1sstrid 3204 . . . . 5  |-  ( ph  ->  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) 
C_  NN )
8 eleq1 2268 . . . . . . . . . . 11  |-  ( x  =  s  ->  (
x  e.  A  <->  s  e.  A ) )
98dcbid 840 . . . . . . . . . 10  |-  ( x  =  s  ->  (DECID  x  e.  A  <-> DECID  s  e.  A )
)
10 nninfdclemf.dc . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
1110adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  A. x  e.  NN DECID  x  e.  A )
12 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  s  e.  NN )
139, 11, 12rspcdva 2882 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  A
)
143adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  NN )  ->  P  e.  NN )
1514nnzd 9496 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  NN )  ->  P  e.  ZZ )
1615peano2zd 9500 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  ( P  +  1 )  e.  ZZ )
1712nnzd 9496 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  ->  s  e.  ZZ )
18 eluzdc 9733 . . . . . . . . . 10  |-  ( ( ( P  +  1 )  e.  ZZ  /\  s  e.  ZZ )  -> DECID  s  e.  ( ZZ>= `  ( P  +  1 ) ) )
1916, 17, 18syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  ( ZZ>=
`  ( P  + 
1 ) ) )
2013, 19dcand 935 . . . . . . . 8  |-  ( (
ph  /\  s  e.  NN )  -> DECID  ( s  e.  A  /\  s  e.  ( ZZ>=
`  ( P  + 
1 ) ) ) )
21 elin 3356 . . . . . . . . 9  |-  ( s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  ( s  e.  A  /\  s  e.  ( ZZ>= `  ( P  +  1 ) ) ) )
2221dcbii 842 . . . . . . . 8  |-  (DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) )  <-> DECID  (
s  e.  A  /\  s  e.  ( ZZ>= `  ( P  +  1
) ) ) )
2320, 22sylibr 134 . . . . . . 7  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
2423ralrimiva 2579 . . . . . 6  |-  ( ph  ->  A. s  e.  NN DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
25 eleq1 2268 . . . . . . . 8  |-  ( s  =  x  ->  (
s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ) )
2625dcbid 840 . . . . . . 7  |-  ( s  =  x  ->  (DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) )  <-> DECID  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ) )
2726cbvralvw 2742 . . . . . 6  |-  ( A. s  e.  NN DECID  s  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  <->  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
2824, 27sylib 122 . . . . 5  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
29 breq1 4048 . . . . . . . . 9  |-  ( m  =  P  ->  (
m  <  n  <->  P  <  n ) )
3029rexbidv 2507 . . . . . . . 8  |-  ( m  =  P  ->  ( E. n  e.  A  m  <  n  <->  E. n  e.  A  P  <  n ) )
31 nninfdclemf.nb . . . . . . . 8  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
3230, 31, 3rspcdva 2882 . . . . . . 7  |-  ( ph  ->  E. n  e.  A  P  <  n )
33 breq2 4049 . . . . . . . 8  |-  ( n  =  t  ->  ( P  <  n  <->  P  <  t ) )
3433cbvrexvw 2743 . . . . . . 7  |-  ( E. n  e.  A  P  <  n  <->  E. t  e.  A  P  <  t )
3532, 34sylib 122 . . . . . 6  |-  ( ph  ->  E. t  e.  A  P  <  t )
36 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  A )
373nnzd 9496 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ZZ )
3837peano2zd 9500 . . . . . . . . . 10  |-  ( ph  ->  ( P  +  1 )  e.  ZZ )
3938adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  +  1 )  e.  ZZ )
401adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  A  C_  NN )
4140, 36sseldd 3194 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  NN )
4241nnzd 9496 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ZZ )
43 simprr 531 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  P  <  t )
44 nnltp1le 9435 . . . . . . . . . . 11  |-  ( ( P  e.  NN  /\  t  e.  NN )  ->  ( P  <  t  <->  ( P  +  1 )  <_  t ) )
453, 41, 44syl2an2r 595 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  <  t  <->  ( P  +  1 )  <_  t ) )
4643, 45mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
( P  +  1 )  <_  t )
47 eluz2 9656 . . . . . . . . 9  |-  ( t  e.  ( ZZ>= `  ( P  +  1 ) )  <->  ( ( P  +  1 )  e.  ZZ  /\  t  e.  ZZ  /\  ( P  +  1 )  <_ 
t ) )
4839, 42, 46, 47syl3anbrc 1184 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ( ZZ>= `  ( P  +  1
) ) )
4936, 48elind 3358 . . . . . . 7  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  -> 
t  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
50 elex2 2788 . . . . . . 7  |-  ( t  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  ->  E. r 
r  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
5149, 50syl 14 . . . . . 6  |-  ( (
ph  /\  ( t  e.  A  /\  P  < 
t ) )  ->  E. r  r  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
5235, 51rexlimddv 2628 . . . . 5  |-  ( ph  ->  E. r  r  e.  ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) )
53 nnmindc 12388 . . . . 5  |-  ( ( ( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) 
C_  NN  /\  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) )  /\  E. r  r  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
547, 28, 52, 53syl3anc 1250 . . . 4  |-  ( ph  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) )
5554elin1d 3362 . . 3  |-  ( ph  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  )  e.  A )
56 fvoveq1 5969 . . . . . 6  |-  ( y  =  P  ->  ( ZZ>=
`  ( y  +  1 ) )  =  ( ZZ>= `  ( P  +  1 ) ) )
5756ineq2d 3374 . . . . 5  |-  ( y  =  P  ->  ( A  i^i  ( ZZ>= `  (
y  +  1 ) ) )  =  ( A  i^i  ( ZZ>= `  ( P  +  1
) ) ) )
5857infeq1d 7116 . . . 4  |-  ( y  =  P  -> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
59 eqidd 2206 . . . 4  |-  ( z  =  Q  -> inf ( ( A  i^i  ( ZZ>= `  ( P  +  1
) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
60 eqid 2205 . . . 4  |-  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)
6158, 59, 60ovmpog 6082 . . 3  |-  ( ( P  e.  NN  /\  Q  e.  NN  /\ inf (
( A  i^i  ( ZZ>=
`  ( P  + 
1 ) ) ) ,  RR ,  <  )  e.  A )  -> 
( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
623, 5, 55, 61syl3anc 1250 . 2  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  = inf ( ( A  i^i  ( ZZ>= `  ( P  +  1 ) ) ) ,  RR ,  <  ) )
6362, 55eqeltrd 2282 1  |-  ( ph  ->  ( P ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) Q )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485    i^i cin 3165    C_ wss 3166   class class class wbr 4045   ` cfv 5272  (class class class)co 5946    e. cmpo 5948  infcinf 7087   RRcr 7926   1c1 7928    + caddc 7930    < clt 8109    <_ cle 8110   NNcn 9038   ZZcz 9374   ZZ>=cuz 9650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133  df-fzo 10267
This theorem is referenced by:  nninfdclemf  12853  nninfdclemp1  12854
  Copyright terms: Public domain W3C validator