ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdec10 Unicode version

Theorem dfdec10 9418
Description: Version of the definition of the "decimal constructor" using ; 1 0 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
dfdec10  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )

Proof of Theorem dfdec10
StepHypRef Expression
1 df-dec 9416 . 2  |- ; A B  =  ( ( ( 9  +  1 )  x.  A
)  +  B )
2 9p1e10 9417 . . . 4  |-  ( 9  +  1 )  = ; 1
0
32oveq1i 5907 . . 3  |-  ( ( 9  +  1 )  x.  A )  =  (; 1 0  x.  A
)
43oveq1i 5907 . 2  |-  ( ( ( 9  +  1 )  x.  A )  +  B )  =  ( (; 1 0  x.  A
)  +  B )
51, 4eqtri 2210 1  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5897   0cc0 7842   1c1 7843    + caddc 7845    x. cmul 7847   9c9 9008  ;cdc 9415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4136  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-1rid 7949  ax-0id 7950  ax-cnre 7953
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-iota 5196  df-fv 5243  df-ov 5900  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-7 9014  df-8 9015  df-9 9016  df-dec 9416
This theorem is referenced by:  decnncl  9434  dec0u  9435  dec0h  9436  decnncl2  9438  declt  9442  decltc  9443  decsuc  9445  decle  9448  declti  9452  decsucc  9455  dec10p  9457  decma  9465  decmac  9466  decma2c  9467  decadd  9468  decaddc  9469  decsubi  9477  decmul1  9478  decmul1c  9479  decmul2c  9480  decmul10add  9483  5t5e25  9517  6t6e36  9522  8t6e48  9533  9t11e99  9544  3dec  10729  3dvdsdec  11905
  Copyright terms: Public domain W3C validator