ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deceq1 GIF version

Theorem deceq1 9461
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
deceq1 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)

Proof of Theorem deceq1
StepHypRef Expression
1 oveq2 5930 . . 3 (𝐴 = 𝐵 → ((9 + 1) · 𝐴) = ((9 + 1) · 𝐵))
21oveq1d 5937 . 2 (𝐴 = 𝐵 → (((9 + 1) · 𝐴) + 𝐶) = (((9 + 1) · 𝐵) + 𝐶))
3 df-dec 9458 . 2 𝐴𝐶 = (((9 + 1) · 𝐴) + 𝐶)
4 df-dec 9458 . 2 𝐵𝐶 = (((9 + 1) · 𝐵) + 𝐶)
52, 3, 43eqtr4g 2254 1 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  (class class class)co 5922  1c1 7880   + caddc 7882   · cmul 7884  9c9 9048  cdc 9457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925  df-dec 9458
This theorem is referenced by:  deceq1i  9463
  Copyright terms: Public domain W3C validator