| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > deceq1 | GIF version | ||
| Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| deceq1 | ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5975 | . . 3 ⊢ (𝐴 = 𝐵 → ((9 + 1) · 𝐴) = ((9 + 1) · 𝐵)) | |
| 2 | 1 | oveq1d 5982 | . 2 ⊢ (𝐴 = 𝐵 → (((9 + 1) · 𝐴) + 𝐶) = (((9 + 1) · 𝐵) + 𝐶)) |
| 3 | df-dec 9540 | . 2 ⊢ ;𝐴𝐶 = (((9 + 1) · 𝐴) + 𝐶) | |
| 4 | df-dec 9540 | . 2 ⊢ ;𝐵𝐶 = (((9 + 1) · 𝐵) + 𝐶) | |
| 5 | 2, 3, 4 | 3eqtr4g 2265 | 1 ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 (class class class)co 5967 1c1 7961 + caddc 7963 · cmul 7965 9c9 9129 ;cdc 9539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-dec 9540 |
| This theorem is referenced by: deceq1i 9545 |
| Copyright terms: Public domain | W3C validator |