![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > deceq1 | GIF version |
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
deceq1 | โข (๐ด = ๐ต โ ;๐ด๐ถ = ;๐ต๐ถ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5885 | . . 3 โข (๐ด = ๐ต โ ((9 + 1) ยท ๐ด) = ((9 + 1) ยท ๐ต)) | |
2 | 1 | oveq1d 5892 | . 2 โข (๐ด = ๐ต โ (((9 + 1) ยท ๐ด) + ๐ถ) = (((9 + 1) ยท ๐ต) + ๐ถ)) |
3 | df-dec 9387 | . 2 โข ;๐ด๐ถ = (((9 + 1) ยท ๐ด) + ๐ถ) | |
4 | df-dec 9387 | . 2 โข ;๐ต๐ถ = (((9 + 1) ยท ๐ต) + ๐ถ) | |
5 | 2, 3, 4 | 3eqtr4g 2235 | 1 โข (๐ด = ๐ต โ ;๐ด๐ถ = ;๐ต๐ถ) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 = wceq 1353 (class class class)co 5877 1c1 7814 + caddc 7816 ยท cmul 7818 9c9 8979 ;cdc 9386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5880 df-dec 9387 |
This theorem is referenced by: deceq1i 9392 |
Copyright terms: Public domain | W3C validator |