ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deceq1 GIF version

Theorem deceq1 9578
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
deceq1 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)

Proof of Theorem deceq1
StepHypRef Expression
1 oveq2 6008 . . 3 (𝐴 = 𝐵 → ((9 + 1) · 𝐴) = ((9 + 1) · 𝐵))
21oveq1d 6015 . 2 (𝐴 = 𝐵 → (((9 + 1) · 𝐴) + 𝐶) = (((9 + 1) · 𝐵) + 𝐶))
3 df-dec 9575 . 2 𝐴𝐶 = (((9 + 1) · 𝐴) + 𝐶)
4 df-dec 9575 . 2 𝐵𝐶 = (((9 + 1) · 𝐵) + 𝐶)
52, 3, 43eqtr4g 2287 1 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  (class class class)co 6000  1c1 7996   + caddc 7998   · cmul 8000  9c9 9164  cdc 9574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003  df-dec 9575
This theorem is referenced by:  deceq1i  9580
  Copyright terms: Public domain W3C validator