Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > deceq1 | GIF version |
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
deceq1 | ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5850 | . . 3 ⊢ (𝐴 = 𝐵 → ((9 + 1) · 𝐴) = ((9 + 1) · 𝐵)) | |
2 | 1 | oveq1d 5857 | . 2 ⊢ (𝐴 = 𝐵 → (((9 + 1) · 𝐴) + 𝐶) = (((9 + 1) · 𝐵) + 𝐶)) |
3 | df-dec 9323 | . 2 ⊢ ;𝐴𝐶 = (((9 + 1) · 𝐴) + 𝐶) | |
4 | df-dec 9323 | . 2 ⊢ ;𝐵𝐶 = (((9 + 1) · 𝐵) + 𝐶) | |
5 | 2, 3, 4 | 3eqtr4g 2224 | 1 ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 (class class class)co 5842 1c1 7754 + caddc 7756 · cmul 7758 9c9 8915 ;cdc 9322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-dec 9323 |
This theorem is referenced by: deceq1i 9328 |
Copyright terms: Public domain | W3C validator |