| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > deceq1 | GIF version | ||
| Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| deceq1 | ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5951 | . . 3 ⊢ (𝐴 = 𝐵 → ((9 + 1) · 𝐴) = ((9 + 1) · 𝐵)) | |
| 2 | 1 | oveq1d 5958 | . 2 ⊢ (𝐴 = 𝐵 → (((9 + 1) · 𝐴) + 𝐶) = (((9 + 1) · 𝐵) + 𝐶)) |
| 3 | df-dec 9504 | . 2 ⊢ ;𝐴𝐶 = (((9 + 1) · 𝐴) + 𝐶) | |
| 4 | df-dec 9504 | . 2 ⊢ ;𝐵𝐶 = (((9 + 1) · 𝐵) + 𝐶) | |
| 5 | 2, 3, 4 | 3eqtr4g 2262 | 1 ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 (class class class)co 5943 1c1 7925 + caddc 7927 · cmul 7929 9c9 9093 ;cdc 9503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-dec 9504 |
| This theorem is referenced by: deceq1i 9509 |
| Copyright terms: Public domain | W3C validator |