ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminmax Unicode version

Theorem xrminmax 11034
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.)
Assertion
Ref Expression
xrminmax  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )

Proof of Theorem xrminmax
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xnegcl 9615 . . . . . . . . . . . 12  |-  ( z  e.  RR*  ->  -e
z  e.  RR* )
2 elprg 3547 . . . . . . . . . . . 12  |-  (  -e z  e.  RR*  ->  (  -e z  e.  { A ,  B }  <->  (  -e
z  =  A  \/  -e z  =  B ) ) )
31, 2syl 14 . . . . . . . . . . 11  |-  ( z  e.  RR*  ->  (  -e z  e.  { A ,  B }  <->  ( 
-e z  =  A  \/  -e
z  =  B ) ) )
43adantl 275 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  e.  { A ,  B }  <->  (  -e
z  =  A  \/  -e z  =  B ) ) )
5 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  z  e.  RR* )
6 simpll 518 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  A  e.  RR* )
75, 6xrnegcon1d 11033 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  =  A  <->  -e A  =  z ) )
8 eqcom 2141 . . . . . . . . . . . 12  |-  (  -e A  =  z  <->  z  =  -e A )
97, 8syl6bb 195 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  =  A  <->  z  =  -e A ) )
10 simplr 519 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  B  e.  RR* )
115, 10xrnegcon1d 11033 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  =  B  <->  -e B  =  z ) )
12 eqcom 2141 . . . . . . . . . . . 12  |-  (  -e B  =  z  <->  z  =  -e B )
1311, 12syl6bb 195 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  =  B  <->  z  =  -e B ) )
149, 13orbi12d 782 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  ( (  -e
z  =  A  \/  -e z  =  B )  <->  ( z  = 
-e A  \/  z  =  -e B ) ) )
154, 14bitrd 187 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  e.  { A ,  B }  <->  ( z  = 
-e A  \/  z  =  -e B ) ) )
1615rabbidva 2674 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  { z  e.  RR*  |  -e
z  e.  { A ,  B } }  =  { z  e.  RR*  |  ( z  =  -e A  \/  z  =  -e B ) } )
17 dfrab2 3351 . . . . . . . . . 10  |-  { z  e.  RR*  |  (
z  =  -e
A  \/  z  = 
-e B ) }  =  ( { z  |  ( z  =  -e A  \/  z  =  -e B ) }  i^i  RR* )
18 dfpr2 3546 . . . . . . . . . . 11  |-  {  -e
A ,  -e
B }  =  {
z  |  ( z  =  -e A  \/  z  =  -e B ) }
1918ineq1i 3273 . . . . . . . . . 10  |-  ( { 
-e A ,  -e B }  i^i  RR* )  =  ( { z  |  ( z  =  -e A  \/  z  =  -e B ) }  i^i  RR* )
2017, 19eqtr4i 2163 . . . . . . . . 9  |-  { z  e.  RR*  |  (
z  =  -e
A  \/  z  = 
-e B ) }  =  ( { 
-e A ,  -e B }  i^i  RR* )
21 xnegcl 9615 . . . . . . . . . . 11  |-  ( A  e.  RR*  ->  -e
A  e.  RR* )
22 xnegcl 9615 . . . . . . . . . . 11  |-  ( B  e.  RR*  ->  -e
B  e.  RR* )
23 prssi 3678 . . . . . . . . . . 11  |-  ( ( 
-e A  e. 
RR*  /\  -e B  e.  RR* )  ->  {  -e
A ,  -e
B }  C_  RR* )
2421, 22, 23syl2an 287 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  {  -e
A ,  -e
B }  C_  RR* )
25 df-ss 3084 . . . . . . . . . 10  |-  ( { 
-e A ,  -e B }  C_  RR*  <->  ( {  -e A ,  -e B }  i^i  RR* )  =  {  -e A ,  -e B } )
2624, 25sylib 121 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( {  -e A ,  -e B }  i^i  RR* )  =  {  -e
A ,  -e
B } )
2720, 26syl5eq 2184 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  { z  e.  RR*  |  (
z  =  -e
A  \/  z  = 
-e B ) }  =  {  -e
A ,  -e
B } )
2816, 27eqtrd 2172 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  { z  e.  RR*  |  -e
z  e.  { A ,  B } }  =  {  -e A ,  -e B } )
2928supeq1d 6874 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  =  sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) )
30 xrmaxcl 11021 . . . . . . 7  |-  ( ( 
-e A  e. 
RR*  /\  -e B  e.  RR* )  ->  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e.  RR* )
3121, 22, 30syl2an 287 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e.  RR* )
3229, 31eqeltrd 2216 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  e.  RR* )
3332xnegcld 9638 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  e.  RR* )
34 xnegeq 9610 . . . . . . . . 9  |-  ( y  =  A  ->  -e
y  =  -e
A )
3534adantl 275 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  -e
y  =  -e
A )
36 xrmax1sup 11022 . . . . . . . . . 10  |-  ( ( 
-e A  e. 
RR*  /\  -e B  e.  RR* )  ->  -e
A  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
3721, 22, 36syl2an 287 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e
A  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
3837ad2antrr 479 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  -e
A  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
3935, 38eqbrtrd 3950 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  -e
y  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
40 simpll 518 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
41 simpr 109 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  y  =  A )
42 simplll 522 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  A  e.  RR* )
4341, 42eqeltrd 2216 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  y  e.  RR* )
44 xnegeq 9610 . . . . . . . . . . . . 13  |-  ( sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  =  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  ->  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  =  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
4529, 44syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  =  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
4645breq2d 3941 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <->  y  <  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
4746notbid 656 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <->  -.  y  <  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) ) )
4847adantr 274 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  ( -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  <->  -.  y  <  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
4931adantr 274 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR* )
5049xnegcld 9638 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  -> 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e. 
RR* )
51 xrlenlt 7829 . . . . . . . . . 10  |-  ( ( 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e. 
RR*  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -.  y  <  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
5250, 51sylancom 416 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -.  y  <  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
53 xleneg 9620 . . . . . . . . . . 11  |-  ( ( 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e. 
RR*  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -e y  <_  -e  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
5450, 53sylancom 416 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -e y  <_  -e  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
55 xnegneg 9616 . . . . . . . . . . . 12  |-  ( sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR*  -> 
-e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  =  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
5649, 55syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  -> 
-e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  =  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
5756breq2d 3941 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e y  <_  -e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <->  -e y  <_  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
5854, 57bitrd 187 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -e y  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) ) )
5948, 52, 583bitr2d 215 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  ( -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  <->  -e y  <_  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
6040, 43, 59syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  ( -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <->  -e y  <_  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
6139, 60mpbird 166 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  ) )
62 xnegeq 9610 . . . . . . . . 9  |-  ( y  =  B  ->  -e
y  =  -e
B )
6362adantl 275 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  -e
y  =  -e
B )
64 xrmax2sup 11023 . . . . . . . . . 10  |-  ( ( 
-e A  e. 
RR*  /\  -e B  e.  RR* )  ->  -e
B  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
6521, 22, 64syl2an 287 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e
B  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
6665ad2antrr 479 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  -e
B  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
6763, 66eqbrtrd 3950 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  -e
y  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
68 simpll 518 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
69 simpr 109 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  y  =  B )
70 simpllr 523 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  B  e.  RR* )
7169, 70eqeltrd 2216 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  y  e.  RR* )
7268, 71, 59syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  ( -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <->  -e y  <_  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
7367, 72mpbird 166 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  ) )
74 elpri 3550 . . . . . . 7  |-  ( y  e.  { A ,  B }  ->  ( y  =  A  \/  y  =  B ) )
7574adantl 275 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  { A ,  B } )  -> 
( y  =  A  \/  y  =  B ) )
7661, 73, 75mpjaodan 787 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  { A ,  B } )  ->  -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  ) )
7776ralrimiva 2505 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A. y  e.  { A ,  B }  -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  ) )
7821ad3antrrr 483 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e A  e.  RR* )
7922ad3antlr 484 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e B  e.  RR* )
80 simplr 519 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  y  e.  RR* )
8180xnegcld 9638 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e y  e.  RR* )
82 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)
8345breq1d 3939 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (  -e sup ( { z  e.  RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  <->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y
) )
8483ad2antrr 479 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  <->  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  )  < 
y ) )
8582, 84mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y
)
8650adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR* )
87 xltneg 9619 . . . . . . . . . . . 12  |-  ( ( 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e. 
RR*  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y  <->  -e y  <  -e  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
8886, 80, 87syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y  <->  -e y  <  -e  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
8956breq2d 3941 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e y  <  -e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <->  -e y  <  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
9089adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e
y  <  -e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <->  -e y  <  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
9188, 90bitrd 187 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y  <->  -e y  <  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) ) )
9285, 91mpbid 146 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e y  <  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
93 xrmaxleastlt 11025 . . . . . . . . 9  |-  ( ( (  -e A  e.  RR*  /\  -e
B  e.  RR* )  /\  (  -e y  e.  RR*  /\  -e
y  <  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) ) )  ->  (  -e
y  <  -e A  \/  -e y  <  -e B ) )
9478, 79, 81, 92, 93syl22anc 1217 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e
y  <  -e A  \/  -e y  <  -e B ) )
95 simplll 522 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  A  e.  RR* )
96 xltneg 9619 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  y  e.  RR* )  ->  ( A  <  y  <->  -e y  <  -e A ) )
9795, 80, 96syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( A  <  y  <->  -e y  <  -e A ) )
98 simpllr 523 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  B  e.  RR* )
99 xltneg 9619 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  y  e.  RR* )  ->  ( B  <  y  <->  -e y  <  -e B ) )
10098, 80, 99syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( B  <  y  <->  -e y  <  -e B ) )
10197, 100orbi12d 782 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( ( A  <  y  \/  B  <  y )  <->  (  -e
y  <  -e A  \/  -e y  <  -e B ) ) )
10294, 101mpbird 166 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( A  <  y  \/  B  < 
y ) )
103 breq1 3932 . . . . . . . . 9  |-  ( z  =  A  ->  (
z  <  y  <->  A  <  y ) )
104 breq1 3932 . . . . . . . . 9  |-  ( z  =  B  ->  (
z  <  y  <->  B  <  y ) )
105103, 104rexprg 3575 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. z  e.  { A ,  B } z  < 
y  <->  ( A  < 
y  \/  B  < 
y ) ) )
106105ad2antrr 479 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( E. z  e.  { A ,  B } z  < 
y  <->  ( A  < 
y  \/  B  < 
y ) ) )
107102, 106mpbird 166 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  E. z  e.  { A ,  B } z  <  y
)
108107ex 114 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
)
109108ralrimiva 2505 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A. y  e.  RR*  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
)
110 breq2 3933 . . . . . . . 8  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  (
y  <  x  <->  y  <  -e sup ( { z  e.  RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  ) ) )
111110notbid 656 . . . . . . 7  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  ( -.  y  <  x  <->  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  ) ) )
112111ralbidv 2437 . . . . . 6  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  ( A. y  e.  { A ,  B }  -.  y  <  x  <->  A. y  e.  { A ,  B }  -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  ) ) )
113 breq1 3932 . . . . . . . 8  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  (
x  <  y  <->  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
) )
114113imbi1d 230 . . . . . . 7  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  (
( x  <  y  ->  E. z  e.  { A ,  B }
z  <  y )  <->  ( 
-e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B } z  <  y
) ) )
115114ralbidv 2437 . . . . . 6  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  ( A. y  e.  RR*  (
x  <  y  ->  E. z  e.  { A ,  B } z  < 
y )  <->  A. y  e.  RR*  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
) )
116112, 115anbi12d 464 . . . . 5  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  (
( A. y  e. 
{ A ,  B }  -.  y  <  x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) )  <->  ( A. y  e.  { A ,  B }  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  /\  A. y  e. 
RR*  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
) ) )
117116rspcev 2789 . . . 4  |-  ( ( 
-e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  e.  RR*  /\  ( A. y  e.  { A ,  B }  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  /\  A. y  e. 
RR*  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
) )  ->  E. x  e.  RR*  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
11833, 77, 109, 117syl12anc 1214 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  E. x  e.  RR*  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
119 prssi 3678 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  { A ,  B }  C_  RR* )
120118, 119infxrnegsupex 11032 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  ) )
121120, 45eqtrd 2172 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   {crab 2420    i^i cin 3070    C_ wss 3071   {cpr 3528   class class class wbr 3929   supcsup 6869  infcinf 6870   RR*cxr 7799    < clt 7800    <_ cle 7801    -ecxne 9556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-xneg 9559  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by:  xrmincl  11035  xrmin1inf  11036  xrmin2inf  11037  xrmineqinf  11038  xrltmininf  11039  xrlemininf  11040  xrminltinf  11041  xrminrecl  11042  xrminrpcl  11043  xrminadd  11044
  Copyright terms: Public domain W3C validator