ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminmax Unicode version

Theorem xrminmax 11784
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.)
Assertion
Ref Expression
xrminmax  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )

Proof of Theorem xrminmax
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xnegcl 10036 . . . . . . . . . . . 12  |-  ( z  e.  RR*  ->  -e
z  e.  RR* )
2 elprg 3686 . . . . . . . . . . . 12  |-  (  -e z  e.  RR*  ->  (  -e z  e.  { A ,  B }  <->  (  -e
z  =  A  \/  -e z  =  B ) ) )
31, 2syl 14 . . . . . . . . . . 11  |-  ( z  e.  RR*  ->  (  -e z  e.  { A ,  B }  <->  ( 
-e z  =  A  \/  -e
z  =  B ) ) )
43adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  e.  { A ,  B }  <->  (  -e
z  =  A  \/  -e z  =  B ) ) )
5 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  z  e.  RR* )
6 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  A  e.  RR* )
75, 6xrnegcon1d 11783 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  =  A  <->  -e A  =  z ) )
8 eqcom 2231 . . . . . . . . . . . 12  |-  (  -e A  =  z  <->  z  =  -e A )
97, 8bitrdi 196 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  =  A  <->  z  =  -e A ) )
10 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  B  e.  RR* )
115, 10xrnegcon1d 11783 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  =  B  <->  -e B  =  z ) )
12 eqcom 2231 . . . . . . . . . . . 12  |-  (  -e B  =  z  <->  z  =  -e B )
1311, 12bitrdi 196 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  =  B  <->  z  =  -e B ) )
149, 13orbi12d 798 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  ( (  -e
z  =  A  \/  -e z  =  B )  <->  ( z  = 
-e A  \/  z  =  -e B ) ) )
154, 14bitrd 188 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  e.  { A ,  B }  <->  ( z  = 
-e A  \/  z  =  -e B ) ) )
1615rabbidva 2787 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  { z  e.  RR*  |  -e
z  e.  { A ,  B } }  =  { z  e.  RR*  |  ( z  =  -e A  \/  z  =  -e B ) } )
17 dfrab2 3479 . . . . . . . . . 10  |-  { z  e.  RR*  |  (
z  =  -e
A  \/  z  = 
-e B ) }  =  ( { z  |  ( z  =  -e A  \/  z  =  -e B ) }  i^i  RR* )
18 dfpr2 3685 . . . . . . . . . . 11  |-  {  -e
A ,  -e
B }  =  {
z  |  ( z  =  -e A  \/  z  =  -e B ) }
1918ineq1i 3401 . . . . . . . . . 10  |-  ( { 
-e A ,  -e B }  i^i  RR* )  =  ( { z  |  ( z  =  -e A  \/  z  =  -e B ) }  i^i  RR* )
2017, 19eqtr4i 2253 . . . . . . . . 9  |-  { z  e.  RR*  |  (
z  =  -e
A  \/  z  = 
-e B ) }  =  ( { 
-e A ,  -e B }  i^i  RR* )
21 xnegcl 10036 . . . . . . . . . . 11  |-  ( A  e.  RR*  ->  -e
A  e.  RR* )
22 xnegcl 10036 . . . . . . . . . . 11  |-  ( B  e.  RR*  ->  -e
B  e.  RR* )
23 prssi 3826 . . . . . . . . . . 11  |-  ( ( 
-e A  e. 
RR*  /\  -e B  e.  RR* )  ->  {  -e
A ,  -e
B }  C_  RR* )
2421, 22, 23syl2an 289 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  {  -e
A ,  -e
B }  C_  RR* )
25 df-ss 3210 . . . . . . . . . 10  |-  ( { 
-e A ,  -e B }  C_  RR*  <->  ( {  -e A ,  -e B }  i^i  RR* )  =  {  -e A ,  -e B } )
2624, 25sylib 122 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( {  -e A ,  -e B }  i^i  RR* )  =  {  -e
A ,  -e
B } )
2720, 26eqtrid 2274 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  { z  e.  RR*  |  (
z  =  -e
A  \/  z  = 
-e B ) }  =  {  -e
A ,  -e
B } )
2816, 27eqtrd 2262 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  { z  e.  RR*  |  -e
z  e.  { A ,  B } }  =  {  -e A ,  -e B } )
2928supeq1d 7162 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  =  sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) )
30 xrmaxcl 11771 . . . . . . 7  |-  ( ( 
-e A  e. 
RR*  /\  -e B  e.  RR* )  ->  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e.  RR* )
3121, 22, 30syl2an 289 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e.  RR* )
3229, 31eqeltrd 2306 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  e.  RR* )
3332xnegcld 10059 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  e.  RR* )
34 xnegeq 10031 . . . . . . . . 9  |-  ( y  =  A  ->  -e
y  =  -e
A )
3534adantl 277 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  -e
y  =  -e
A )
36 xrmax1sup 11772 . . . . . . . . . 10  |-  ( ( 
-e A  e. 
RR*  /\  -e B  e.  RR* )  ->  -e
A  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
3721, 22, 36syl2an 289 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e
A  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
3837ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  -e
A  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
3935, 38eqbrtrd 4105 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  -e
y  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
40 simpll 527 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
41 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  y  =  A )
42 simplll 533 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  A  e.  RR* )
4341, 42eqeltrd 2306 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  y  e.  RR* )
44 xnegeq 10031 . . . . . . . . . . . . 13  |-  ( sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  =  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  ->  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  =  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
4529, 44syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  =  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
4645breq2d 4095 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <->  y  <  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
4746notbid 671 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <->  -.  y  <  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) ) )
4847adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  ( -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  <->  -.  y  <  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
4931adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR* )
5049xnegcld 10059 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  -> 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e. 
RR* )
51 xrlenlt 8219 . . . . . . . . . 10  |-  ( ( 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e. 
RR*  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -.  y  <  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
5250, 51sylancom 420 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -.  y  <  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
53 xleneg 10041 . . . . . . . . . . 11  |-  ( ( 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e. 
RR*  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -e y  <_  -e  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
5450, 53sylancom 420 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -e y  <_  -e  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
55 xnegneg 10037 . . . . . . . . . . . 12  |-  ( sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR*  -> 
-e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  =  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
5649, 55syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  -> 
-e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  =  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
5756breq2d 4095 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e y  <_  -e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <->  -e y  <_  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
5854, 57bitrd 188 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -e y  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) ) )
5948, 52, 583bitr2d 216 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  ( -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  <->  -e y  <_  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
6040, 43, 59syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  ( -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <->  -e y  <_  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
6139, 60mpbird 167 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  ) )
62 xnegeq 10031 . . . . . . . . 9  |-  ( y  =  B  ->  -e
y  =  -e
B )
6362adantl 277 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  -e
y  =  -e
B )
64 xrmax2sup 11773 . . . . . . . . . 10  |-  ( ( 
-e A  e. 
RR*  /\  -e B  e.  RR* )  ->  -e
B  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
6521, 22, 64syl2an 289 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e
B  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
6665ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  -e
B  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
6763, 66eqbrtrd 4105 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  -e
y  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
68 simpll 527 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
69 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  y  =  B )
70 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  B  e.  RR* )
7169, 70eqeltrd 2306 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  y  e.  RR* )
7268, 71, 59syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  ( -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <->  -e y  <_  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
7367, 72mpbird 167 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  ) )
74 elpri 3689 . . . . . . 7  |-  ( y  e.  { A ,  B }  ->  ( y  =  A  \/  y  =  B ) )
7574adantl 277 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  { A ,  B } )  -> 
( y  =  A  \/  y  =  B ) )
7661, 73, 75mpjaodan 803 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  { A ,  B } )  ->  -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  ) )
7776ralrimiva 2603 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A. y  e.  { A ,  B }  -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  ) )
7821ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e A  e.  RR* )
7922ad3antlr 493 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e B  e.  RR* )
80 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  y  e.  RR* )
8180xnegcld 10059 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e y  e.  RR* )
82 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)
8345breq1d 4093 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (  -e sup ( { z  e.  RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  <->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y
) )
8483ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  <->  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  )  < 
y ) )
8582, 84mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y
)
8650adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR* )
87 xltneg 10040 . . . . . . . . . . . 12  |-  ( ( 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e. 
RR*  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y  <->  -e y  <  -e  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
8886, 80, 87syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y  <->  -e y  <  -e  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
8956breq2d 4095 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e y  <  -e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <->  -e y  <  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
9089adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e
y  <  -e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <->  -e y  <  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
9188, 90bitrd 188 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y  <->  -e y  <  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) ) )
9285, 91mpbid 147 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e y  <  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
93 xrmaxleastlt 11775 . . . . . . . . 9  |-  ( ( (  -e A  e.  RR*  /\  -e
B  e.  RR* )  /\  (  -e y  e.  RR*  /\  -e
y  <  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) ) )  ->  (  -e
y  <  -e A  \/  -e y  <  -e B ) )
9478, 79, 81, 92, 93syl22anc 1272 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e
y  <  -e A  \/  -e y  <  -e B ) )
95 simplll 533 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  A  e.  RR* )
96 xltneg 10040 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  y  e.  RR* )  ->  ( A  <  y  <->  -e y  <  -e A ) )
9795, 80, 96syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( A  <  y  <->  -e y  <  -e A ) )
98 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  B  e.  RR* )
99 xltneg 10040 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  y  e.  RR* )  ->  ( B  <  y  <->  -e y  <  -e B ) )
10098, 80, 99syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( B  <  y  <->  -e y  <  -e B ) )
10197, 100orbi12d 798 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( ( A  <  y  \/  B  <  y )  <->  (  -e
y  <  -e A  \/  -e y  <  -e B ) ) )
10294, 101mpbird 167 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( A  <  y  \/  B  < 
y ) )
103 breq1 4086 . . . . . . . . 9  |-  ( z  =  A  ->  (
z  <  y  <->  A  <  y ) )
104 breq1 4086 . . . . . . . . 9  |-  ( z  =  B  ->  (
z  <  y  <->  B  <  y ) )
105103, 104rexprg 3718 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. z  e.  { A ,  B } z  < 
y  <->  ( A  < 
y  \/  B  < 
y ) ) )
106105ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( E. z  e.  { A ,  B } z  < 
y  <->  ( A  < 
y  \/  B  < 
y ) ) )
107102, 106mpbird 167 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  E. z  e.  { A ,  B } z  <  y
)
108107ex 115 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
)
109108ralrimiva 2603 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A. y  e.  RR*  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
)
110 breq2 4087 . . . . . . . 8  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  (
y  <  x  <->  y  <  -e sup ( { z  e.  RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  ) ) )
111110notbid 671 . . . . . . 7  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  ( -.  y  <  x  <->  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  ) ) )
112111ralbidv 2530 . . . . . 6  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  ( A. y  e.  { A ,  B }  -.  y  <  x  <->  A. y  e.  { A ,  B }  -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  ) ) )
113 breq1 4086 . . . . . . . 8  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  (
x  <  y  <->  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
) )
114113imbi1d 231 . . . . . . 7  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  (
( x  <  y  ->  E. z  e.  { A ,  B }
z  <  y )  <->  ( 
-e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B } z  <  y
) ) )
115114ralbidv 2530 . . . . . 6  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  ( A. y  e.  RR*  (
x  <  y  ->  E. z  e.  { A ,  B } z  < 
y )  <->  A. y  e.  RR*  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
) )
116112, 115anbi12d 473 . . . . 5  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  (
( A. y  e. 
{ A ,  B }  -.  y  <  x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) )  <->  ( A. y  e.  { A ,  B }  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  /\  A. y  e. 
RR*  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
) ) )
117116rspcev 2907 . . . 4  |-  ( ( 
-e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  e.  RR*  /\  ( A. y  e.  { A ,  B }  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  /\  A. y  e. 
RR*  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
) )  ->  E. x  e.  RR*  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
11833, 77, 109, 117syl12anc 1269 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  E. x  e.  RR*  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
119 prssi 3826 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  { A ,  B }  C_  RR* )
120118, 119infxrnegsupex 11782 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  ) )
121120, 45eqtrd 2262 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509   {crab 2512    i^i cin 3196    C_ wss 3197   {cpr 3667   class class class wbr 4083   supcsup 7157  infcinf 7158   RR*cxr 8188    < clt 8189    <_ cle 8190    -ecxne 9973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-rp 9858  df-xneg 9976  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518
This theorem is referenced by:  xrmincl  11785  xrmin1inf  11786  xrmin2inf  11787  xrmineqinf  11788  xrltmininf  11789  xrlemininf  11790  xrminltinf  11791  xrminrecl  11792  xrminrpcl  11793  xrminadd  11794
  Copyright terms: Public domain W3C validator