| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrminmax | Unicode version | ||
| Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.) |
| Ref | Expression |
|---|---|
| xrminmax |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegcl 10016 |
. . . . . . . . . . . 12
| |
| 2 | elprg 3686 |
. . . . . . . . . . . 12
| |
| 3 | 1, 2 | syl 14 |
. . . . . . . . . . 11
|
| 4 | 3 | adantl 277 |
. . . . . . . . . 10
|
| 5 | simpr 110 |
. . . . . . . . . . . . 13
| |
| 6 | simpll 527 |
. . . . . . . . . . . . 13
| |
| 7 | 5, 6 | xrnegcon1d 11761 |
. . . . . . . . . . . 12
|
| 8 | eqcom 2231 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | bitrdi 196 |
. . . . . . . . . . 11
|
| 10 | simplr 528 |
. . . . . . . . . . . . 13
| |
| 11 | 5, 10 | xrnegcon1d 11761 |
. . . . . . . . . . . 12
|
| 12 | eqcom 2231 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | bitrdi 196 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | orbi12d 798 |
. . . . . . . . . 10
|
| 15 | 4, 14 | bitrd 188 |
. . . . . . . . 9
|
| 16 | 15 | rabbidva 2787 |
. . . . . . . 8
|
| 17 | dfrab2 3479 |
. . . . . . . . . 10
| |
| 18 | dfpr2 3685 |
. . . . . . . . . . 11
| |
| 19 | 18 | ineq1i 3401 |
. . . . . . . . . 10
|
| 20 | 17, 19 | eqtr4i 2253 |
. . . . . . . . 9
|
| 21 | xnegcl 10016 |
. . . . . . . . . . 11
| |
| 22 | xnegcl 10016 |
. . . . . . . . . . 11
| |
| 23 | prssi 3825 |
. . . . . . . . . . 11
| |
| 24 | 21, 22, 23 | syl2an 289 |
. . . . . . . . . 10
|
| 25 | df-ss 3210 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | sylib 122 |
. . . . . . . . 9
|
| 27 | 20, 26 | eqtrid 2274 |
. . . . . . . 8
|
| 28 | 16, 27 | eqtrd 2262 |
. . . . . . 7
|
| 29 | 28 | supeq1d 7142 |
. . . . . 6
|
| 30 | xrmaxcl 11749 |
. . . . . . 7
| |
| 31 | 21, 22, 30 | syl2an 289 |
. . . . . 6
|
| 32 | 29, 31 | eqeltrd 2306 |
. . . . 5
|
| 33 | 32 | xnegcld 10039 |
. . . 4
|
| 34 | xnegeq 10011 |
. . . . . . . . 9
| |
| 35 | 34 | adantl 277 |
. . . . . . . 8
|
| 36 | xrmax1sup 11750 |
. . . . . . . . . 10
| |
| 37 | 21, 22, 36 | syl2an 289 |
. . . . . . . . 9
|
| 38 | 37 | ad2antrr 488 |
. . . . . . . 8
|
| 39 | 35, 38 | eqbrtrd 4104 |
. . . . . . 7
|
| 40 | simpll 527 |
. . . . . . . 8
| |
| 41 | simpr 110 |
. . . . . . . . 9
| |
| 42 | simplll 533 |
. . . . . . . . 9
| |
| 43 | 41, 42 | eqeltrd 2306 |
. . . . . . . 8
|
| 44 | xnegeq 10011 |
. . . . . . . . . . . . 13
| |
| 45 | 29, 44 | syl 14 |
. . . . . . . . . . . 12
|
| 46 | 45 | breq2d 4094 |
. . . . . . . . . . 11
|
| 47 | 46 | notbid 671 |
. . . . . . . . . 10
|
| 48 | 47 | adantr 276 |
. . . . . . . . 9
|
| 49 | 31 | adantr 276 |
. . . . . . . . . . 11
|
| 50 | 49 | xnegcld 10039 |
. . . . . . . . . 10
|
| 51 | xrlenlt 8199 |
. . . . . . . . . 10
| |
| 52 | 50, 51 | sylancom 420 |
. . . . . . . . 9
|
| 53 | xleneg 10021 |
. . . . . . . . . . 11
| |
| 54 | 50, 53 | sylancom 420 |
. . . . . . . . . 10
|
| 55 | xnegneg 10017 |
. . . . . . . . . . . 12
| |
| 56 | 49, 55 | syl 14 |
. . . . . . . . . . 11
|
| 57 | 56 | breq2d 4094 |
. . . . . . . . . 10
|
| 58 | 54, 57 | bitrd 188 |
. . . . . . . . 9
|
| 59 | 48, 52, 58 | 3bitr2d 216 |
. . . . . . . 8
|
| 60 | 40, 43, 59 | syl2anc 411 |
. . . . . . 7
|
| 61 | 39, 60 | mpbird 167 |
. . . . . 6
|
| 62 | xnegeq 10011 |
. . . . . . . . 9
| |
| 63 | 62 | adantl 277 |
. . . . . . . 8
|
| 64 | xrmax2sup 11751 |
. . . . . . . . . 10
| |
| 65 | 21, 22, 64 | syl2an 289 |
. . . . . . . . 9
|
| 66 | 65 | ad2antrr 488 |
. . . . . . . 8
|
| 67 | 63, 66 | eqbrtrd 4104 |
. . . . . . 7
|
| 68 | simpll 527 |
. . . . . . . 8
| |
| 69 | simpr 110 |
. . . . . . . . 9
| |
| 70 | simpllr 534 |
. . . . . . . . 9
| |
| 71 | 69, 70 | eqeltrd 2306 |
. . . . . . . 8
|
| 72 | 68, 71, 59 | syl2anc 411 |
. . . . . . 7
|
| 73 | 67, 72 | mpbird 167 |
. . . . . 6
|
| 74 | elpri 3689 |
. . . . . . 7
| |
| 75 | 74 | adantl 277 |
. . . . . 6
|
| 76 | 61, 73, 75 | mpjaodan 803 |
. . . . 5
|
| 77 | 76 | ralrimiva 2603 |
. . . 4
|
| 78 | 21 | ad3antrrr 492 |
. . . . . . . . 9
|
| 79 | 22 | ad3antlr 493 |
. . . . . . . . 9
|
| 80 | simplr 528 |
. . . . . . . . . 10
| |
| 81 | 80 | xnegcld 10039 |
. . . . . . . . 9
|
| 82 | simpr 110 |
. . . . . . . . . . 11
| |
| 83 | 45 | breq1d 4092 |
. . . . . . . . . . . 12
|
| 84 | 83 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 85 | 82, 84 | mpbid 147 |
. . . . . . . . . 10
|
| 86 | 50 | adantr 276 |
. . . . . . . . . . . 12
|
| 87 | xltneg 10020 |
. . . . . . . . . . . 12
| |
| 88 | 86, 80, 87 | syl2anc 411 |
. . . . . . . . . . 11
|
| 89 | 56 | breq2d 4094 |
. . . . . . . . . . . 12
|
| 90 | 89 | adantr 276 |
. . . . . . . . . . 11
|
| 91 | 88, 90 | bitrd 188 |
. . . . . . . . . 10
|
| 92 | 85, 91 | mpbid 147 |
. . . . . . . . 9
|
| 93 | xrmaxleastlt 11753 |
. . . . . . . . 9
| |
| 94 | 78, 79, 81, 92, 93 | syl22anc 1272 |
. . . . . . . 8
|
| 95 | simplll 533 |
. . . . . . . . . 10
| |
| 96 | xltneg 10020 |
. . . . . . . . . 10
| |
| 97 | 95, 80, 96 | syl2anc 411 |
. . . . . . . . 9
|
| 98 | simpllr 534 |
. . . . . . . . . 10
| |
| 99 | xltneg 10020 |
. . . . . . . . . 10
| |
| 100 | 98, 80, 99 | syl2anc 411 |
. . . . . . . . 9
|
| 101 | 97, 100 | orbi12d 798 |
. . . . . . . 8
|
| 102 | 94, 101 | mpbird 167 |
. . . . . . 7
|
| 103 | breq1 4085 |
. . . . . . . . 9
| |
| 104 | breq1 4085 |
. . . . . . . . 9
| |
| 105 | 103, 104 | rexprg 3718 |
. . . . . . . 8
|
| 106 | 105 | ad2antrr 488 |
. . . . . . 7
|
| 107 | 102, 106 | mpbird 167 |
. . . . . 6
|
| 108 | 107 | ex 115 |
. . . . 5
|
| 109 | 108 | ralrimiva 2603 |
. . . 4
|
| 110 | breq2 4086 |
. . . . . . . 8
| |
| 111 | 110 | notbid 671 |
. . . . . . 7
|
| 112 | 111 | ralbidv 2530 |
. . . . . 6
|
| 113 | breq1 4085 |
. . . . . . . 8
| |
| 114 | 113 | imbi1d 231 |
. . . . . . 7
|
| 115 | 114 | ralbidv 2530 |
. . . . . 6
|
| 116 | 112, 115 | anbi12d 473 |
. . . . 5
|
| 117 | 116 | rspcev 2907 |
. . . 4
|
| 118 | 33, 77, 109, 117 | syl12anc 1269 |
. . 3
|
| 119 | prssi 3825 |
. . 3
| |
| 120 | 118, 119 | infxrnegsupex 11760 |
. 2
|
| 121 | 120, 45 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-rp 9838 df-xneg 9956 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 |
| This theorem is referenced by: xrmincl 11763 xrmin1inf 11764 xrmin2inf 11765 xrmineqinf 11766 xrltmininf 11767 xrlemininf 11768 xrminltinf 11769 xrminrecl 11770 xrminrpcl 11771 xrminadd 11772 |
| Copyright terms: Public domain | W3C validator |