Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrminmax | Unicode version |
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.) |
Ref | Expression |
---|---|
xrminmax | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegcl 9768 | . . . . . . . . . . . 12 | |
2 | elprg 3596 | . . . . . . . . . . . 12 | |
3 | 1, 2 | syl 14 | . . . . . . . . . . 11 |
4 | 3 | adantl 275 | . . . . . . . . . 10 |
5 | simpr 109 | . . . . . . . . . . . . 13 | |
6 | simpll 519 | . . . . . . . . . . . . 13 | |
7 | 5, 6 | xrnegcon1d 11205 | . . . . . . . . . . . 12 |
8 | eqcom 2167 | . . . . . . . . . . . 12 | |
9 | 7, 8 | bitrdi 195 | . . . . . . . . . . 11 |
10 | simplr 520 | . . . . . . . . . . . . 13 | |
11 | 5, 10 | xrnegcon1d 11205 | . . . . . . . . . . . 12 |
12 | eqcom 2167 | . . . . . . . . . . . 12 | |
13 | 11, 12 | bitrdi 195 | . . . . . . . . . . 11 |
14 | 9, 13 | orbi12d 783 | . . . . . . . . . 10 |
15 | 4, 14 | bitrd 187 | . . . . . . . . 9 |
16 | 15 | rabbidva 2714 | . . . . . . . 8 |
17 | dfrab2 3397 | . . . . . . . . . 10 | |
18 | dfpr2 3595 | . . . . . . . . . . 11 | |
19 | 18 | ineq1i 3319 | . . . . . . . . . 10 |
20 | 17, 19 | eqtr4i 2189 | . . . . . . . . 9 |
21 | xnegcl 9768 | . . . . . . . . . . 11 | |
22 | xnegcl 9768 | . . . . . . . . . . 11 | |
23 | prssi 3731 | . . . . . . . . . . 11 | |
24 | 21, 22, 23 | syl2an 287 | . . . . . . . . . 10 |
25 | df-ss 3129 | . . . . . . . . . 10 | |
26 | 24, 25 | sylib 121 | . . . . . . . . 9 |
27 | 20, 26 | syl5eq 2211 | . . . . . . . 8 |
28 | 16, 27 | eqtrd 2198 | . . . . . . 7 |
29 | 28 | supeq1d 6952 | . . . . . 6 |
30 | xrmaxcl 11193 | . . . . . . 7 | |
31 | 21, 22, 30 | syl2an 287 | . . . . . 6 |
32 | 29, 31 | eqeltrd 2243 | . . . . 5 |
33 | 32 | xnegcld 9791 | . . . 4 |
34 | xnegeq 9763 | . . . . . . . . 9 | |
35 | 34 | adantl 275 | . . . . . . . 8 |
36 | xrmax1sup 11194 | . . . . . . . . . 10 | |
37 | 21, 22, 36 | syl2an 287 | . . . . . . . . 9 |
38 | 37 | ad2antrr 480 | . . . . . . . 8 |
39 | 35, 38 | eqbrtrd 4004 | . . . . . . 7 |
40 | simpll 519 | . . . . . . . 8 | |
41 | simpr 109 | . . . . . . . . 9 | |
42 | simplll 523 | . . . . . . . . 9 | |
43 | 41, 42 | eqeltrd 2243 | . . . . . . . 8 |
44 | xnegeq 9763 | . . . . . . . . . . . . 13 | |
45 | 29, 44 | syl 14 | . . . . . . . . . . . 12 |
46 | 45 | breq2d 3994 | . . . . . . . . . . 11 |
47 | 46 | notbid 657 | . . . . . . . . . 10 |
48 | 47 | adantr 274 | . . . . . . . . 9 |
49 | 31 | adantr 274 | . . . . . . . . . . 11 |
50 | 49 | xnegcld 9791 | . . . . . . . . . 10 |
51 | xrlenlt 7963 | . . . . . . . . . 10 | |
52 | 50, 51 | sylancom 417 | . . . . . . . . 9 |
53 | xleneg 9773 | . . . . . . . . . . 11 | |
54 | 50, 53 | sylancom 417 | . . . . . . . . . 10 |
55 | xnegneg 9769 | . . . . . . . . . . . 12 | |
56 | 49, 55 | syl 14 | . . . . . . . . . . 11 |
57 | 56 | breq2d 3994 | . . . . . . . . . 10 |
58 | 54, 57 | bitrd 187 | . . . . . . . . 9 |
59 | 48, 52, 58 | 3bitr2d 215 | . . . . . . . 8 |
60 | 40, 43, 59 | syl2anc 409 | . . . . . . 7 |
61 | 39, 60 | mpbird 166 | . . . . . 6 |
62 | xnegeq 9763 | . . . . . . . . 9 | |
63 | 62 | adantl 275 | . . . . . . . 8 |
64 | xrmax2sup 11195 | . . . . . . . . . 10 | |
65 | 21, 22, 64 | syl2an 287 | . . . . . . . . 9 |
66 | 65 | ad2antrr 480 | . . . . . . . 8 |
67 | 63, 66 | eqbrtrd 4004 | . . . . . . 7 |
68 | simpll 519 | . . . . . . . 8 | |
69 | simpr 109 | . . . . . . . . 9 | |
70 | simpllr 524 | . . . . . . . . 9 | |
71 | 69, 70 | eqeltrd 2243 | . . . . . . . 8 |
72 | 68, 71, 59 | syl2anc 409 | . . . . . . 7 |
73 | 67, 72 | mpbird 166 | . . . . . 6 |
74 | elpri 3599 | . . . . . . 7 | |
75 | 74 | adantl 275 | . . . . . 6 |
76 | 61, 73, 75 | mpjaodan 788 | . . . . 5 |
77 | 76 | ralrimiva 2539 | . . . 4 |
78 | 21 | ad3antrrr 484 | . . . . . . . . 9 |
79 | 22 | ad3antlr 485 | . . . . . . . . 9 |
80 | simplr 520 | . . . . . . . . . 10 | |
81 | 80 | xnegcld 9791 | . . . . . . . . 9 |
82 | simpr 109 | . . . . . . . . . . 11 | |
83 | 45 | breq1d 3992 | . . . . . . . . . . . 12 |
84 | 83 | ad2antrr 480 | . . . . . . . . . . 11 |
85 | 82, 84 | mpbid 146 | . . . . . . . . . 10 |
86 | 50 | adantr 274 | . . . . . . . . . . . 12 |
87 | xltneg 9772 | . . . . . . . . . . . 12 | |
88 | 86, 80, 87 | syl2anc 409 | . . . . . . . . . . 11 |
89 | 56 | breq2d 3994 | . . . . . . . . . . . 12 |
90 | 89 | adantr 274 | . . . . . . . . . . 11 |
91 | 88, 90 | bitrd 187 | . . . . . . . . . 10 |
92 | 85, 91 | mpbid 146 | . . . . . . . . 9 |
93 | xrmaxleastlt 11197 | . . . . . . . . 9 | |
94 | 78, 79, 81, 92, 93 | syl22anc 1229 | . . . . . . . 8 |
95 | simplll 523 | . . . . . . . . . 10 | |
96 | xltneg 9772 | . . . . . . . . . 10 | |
97 | 95, 80, 96 | syl2anc 409 | . . . . . . . . 9 |
98 | simpllr 524 | . . . . . . . . . 10 | |
99 | xltneg 9772 | . . . . . . . . . 10 | |
100 | 98, 80, 99 | syl2anc 409 | . . . . . . . . 9 |
101 | 97, 100 | orbi12d 783 | . . . . . . . 8 |
102 | 94, 101 | mpbird 166 | . . . . . . 7 |
103 | breq1 3985 | . . . . . . . . 9 | |
104 | breq1 3985 | . . . . . . . . 9 | |
105 | 103, 104 | rexprg 3628 | . . . . . . . 8 |
106 | 105 | ad2antrr 480 | . . . . . . 7 |
107 | 102, 106 | mpbird 166 | . . . . . 6 |
108 | 107 | ex 114 | . . . . 5 |
109 | 108 | ralrimiva 2539 | . . . 4 |
110 | breq2 3986 | . . . . . . . 8 | |
111 | 110 | notbid 657 | . . . . . . 7 |
112 | 111 | ralbidv 2466 | . . . . . 6 |
113 | breq1 3985 | . . . . . . . 8 | |
114 | 113 | imbi1d 230 | . . . . . . 7 |
115 | 114 | ralbidv 2466 | . . . . . 6 |
116 | 112, 115 | anbi12d 465 | . . . . 5 |
117 | 116 | rspcev 2830 | . . . 4 |
118 | 33, 77, 109, 117 | syl12anc 1226 | . . 3 |
119 | prssi 3731 | . . 3 | |
120 | 118, 119 | infxrnegsupex 11204 | . 2 inf |
121 | 120, 45 | eqtrd 2198 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 crab 2448 cin 3115 wss 3116 cpr 3577 class class class wbr 3982 csup 6947 infcinf 6948 cxr 7932 clt 7933 cle 7934 cxne 9705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-xneg 9708 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 |
This theorem is referenced by: xrmincl 11207 xrmin1inf 11208 xrmin2inf 11209 xrmineqinf 11210 xrltmininf 11211 xrlemininf 11212 xrminltinf 11213 xrminrecl 11214 xrminrpcl 11215 xrminadd 11216 |
Copyright terms: Public domain | W3C validator |