| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrminmax | Unicode version | ||
| Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.) |
| Ref | Expression |
|---|---|
| xrminmax |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegcl 9969 |
. . . . . . . . . . . 12
| |
| 2 | elprg 3657 |
. . . . . . . . . . . 12
| |
| 3 | 1, 2 | syl 14 |
. . . . . . . . . . 11
|
| 4 | 3 | adantl 277 |
. . . . . . . . . 10
|
| 5 | simpr 110 |
. . . . . . . . . . . . 13
| |
| 6 | simpll 527 |
. . . . . . . . . . . . 13
| |
| 7 | 5, 6 | xrnegcon1d 11645 |
. . . . . . . . . . . 12
|
| 8 | eqcom 2208 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | bitrdi 196 |
. . . . . . . . . . 11
|
| 10 | simplr 528 |
. . . . . . . . . . . . 13
| |
| 11 | 5, 10 | xrnegcon1d 11645 |
. . . . . . . . . . . 12
|
| 12 | eqcom 2208 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | bitrdi 196 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | orbi12d 795 |
. . . . . . . . . 10
|
| 15 | 4, 14 | bitrd 188 |
. . . . . . . . 9
|
| 16 | 15 | rabbidva 2761 |
. . . . . . . 8
|
| 17 | dfrab2 3452 |
. . . . . . . . . 10
| |
| 18 | dfpr2 3656 |
. . . . . . . . . . 11
| |
| 19 | 18 | ineq1i 3374 |
. . . . . . . . . 10
|
| 20 | 17, 19 | eqtr4i 2230 |
. . . . . . . . 9
|
| 21 | xnegcl 9969 |
. . . . . . . . . . 11
| |
| 22 | xnegcl 9969 |
. . . . . . . . . . 11
| |
| 23 | prssi 3796 |
. . . . . . . . . . 11
| |
| 24 | 21, 22, 23 | syl2an 289 |
. . . . . . . . . 10
|
| 25 | df-ss 3183 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | sylib 122 |
. . . . . . . . 9
|
| 27 | 20, 26 | eqtrid 2251 |
. . . . . . . 8
|
| 28 | 16, 27 | eqtrd 2239 |
. . . . . . 7
|
| 29 | 28 | supeq1d 7103 |
. . . . . 6
|
| 30 | xrmaxcl 11633 |
. . . . . . 7
| |
| 31 | 21, 22, 30 | syl2an 289 |
. . . . . 6
|
| 32 | 29, 31 | eqeltrd 2283 |
. . . . 5
|
| 33 | 32 | xnegcld 9992 |
. . . 4
|
| 34 | xnegeq 9964 |
. . . . . . . . 9
| |
| 35 | 34 | adantl 277 |
. . . . . . . 8
|
| 36 | xrmax1sup 11634 |
. . . . . . . . . 10
| |
| 37 | 21, 22, 36 | syl2an 289 |
. . . . . . . . 9
|
| 38 | 37 | ad2antrr 488 |
. . . . . . . 8
|
| 39 | 35, 38 | eqbrtrd 4072 |
. . . . . . 7
|
| 40 | simpll 527 |
. . . . . . . 8
| |
| 41 | simpr 110 |
. . . . . . . . 9
| |
| 42 | simplll 533 |
. . . . . . . . 9
| |
| 43 | 41, 42 | eqeltrd 2283 |
. . . . . . . 8
|
| 44 | xnegeq 9964 |
. . . . . . . . . . . . 13
| |
| 45 | 29, 44 | syl 14 |
. . . . . . . . . . . 12
|
| 46 | 45 | breq2d 4062 |
. . . . . . . . . . 11
|
| 47 | 46 | notbid 669 |
. . . . . . . . . 10
|
| 48 | 47 | adantr 276 |
. . . . . . . . 9
|
| 49 | 31 | adantr 276 |
. . . . . . . . . . 11
|
| 50 | 49 | xnegcld 9992 |
. . . . . . . . . 10
|
| 51 | xrlenlt 8152 |
. . . . . . . . . 10
| |
| 52 | 50, 51 | sylancom 420 |
. . . . . . . . 9
|
| 53 | xleneg 9974 |
. . . . . . . . . . 11
| |
| 54 | 50, 53 | sylancom 420 |
. . . . . . . . . 10
|
| 55 | xnegneg 9970 |
. . . . . . . . . . . 12
| |
| 56 | 49, 55 | syl 14 |
. . . . . . . . . . 11
|
| 57 | 56 | breq2d 4062 |
. . . . . . . . . 10
|
| 58 | 54, 57 | bitrd 188 |
. . . . . . . . 9
|
| 59 | 48, 52, 58 | 3bitr2d 216 |
. . . . . . . 8
|
| 60 | 40, 43, 59 | syl2anc 411 |
. . . . . . 7
|
| 61 | 39, 60 | mpbird 167 |
. . . . . 6
|
| 62 | xnegeq 9964 |
. . . . . . . . 9
| |
| 63 | 62 | adantl 277 |
. . . . . . . 8
|
| 64 | xrmax2sup 11635 |
. . . . . . . . . 10
| |
| 65 | 21, 22, 64 | syl2an 289 |
. . . . . . . . 9
|
| 66 | 65 | ad2antrr 488 |
. . . . . . . 8
|
| 67 | 63, 66 | eqbrtrd 4072 |
. . . . . . 7
|
| 68 | simpll 527 |
. . . . . . . 8
| |
| 69 | simpr 110 |
. . . . . . . . 9
| |
| 70 | simpllr 534 |
. . . . . . . . 9
| |
| 71 | 69, 70 | eqeltrd 2283 |
. . . . . . . 8
|
| 72 | 68, 71, 59 | syl2anc 411 |
. . . . . . 7
|
| 73 | 67, 72 | mpbird 167 |
. . . . . 6
|
| 74 | elpri 3660 |
. . . . . . 7
| |
| 75 | 74 | adantl 277 |
. . . . . 6
|
| 76 | 61, 73, 75 | mpjaodan 800 |
. . . . 5
|
| 77 | 76 | ralrimiva 2580 |
. . . 4
|
| 78 | 21 | ad3antrrr 492 |
. . . . . . . . 9
|
| 79 | 22 | ad3antlr 493 |
. . . . . . . . 9
|
| 80 | simplr 528 |
. . . . . . . . . 10
| |
| 81 | 80 | xnegcld 9992 |
. . . . . . . . 9
|
| 82 | simpr 110 |
. . . . . . . . . . 11
| |
| 83 | 45 | breq1d 4060 |
. . . . . . . . . . . 12
|
| 84 | 83 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 85 | 82, 84 | mpbid 147 |
. . . . . . . . . 10
|
| 86 | 50 | adantr 276 |
. . . . . . . . . . . 12
|
| 87 | xltneg 9973 |
. . . . . . . . . . . 12
| |
| 88 | 86, 80, 87 | syl2anc 411 |
. . . . . . . . . . 11
|
| 89 | 56 | breq2d 4062 |
. . . . . . . . . . . 12
|
| 90 | 89 | adantr 276 |
. . . . . . . . . . 11
|
| 91 | 88, 90 | bitrd 188 |
. . . . . . . . . 10
|
| 92 | 85, 91 | mpbid 147 |
. . . . . . . . 9
|
| 93 | xrmaxleastlt 11637 |
. . . . . . . . 9
| |
| 94 | 78, 79, 81, 92, 93 | syl22anc 1251 |
. . . . . . . 8
|
| 95 | simplll 533 |
. . . . . . . . . 10
| |
| 96 | xltneg 9973 |
. . . . . . . . . 10
| |
| 97 | 95, 80, 96 | syl2anc 411 |
. . . . . . . . 9
|
| 98 | simpllr 534 |
. . . . . . . . . 10
| |
| 99 | xltneg 9973 |
. . . . . . . . . 10
| |
| 100 | 98, 80, 99 | syl2anc 411 |
. . . . . . . . 9
|
| 101 | 97, 100 | orbi12d 795 |
. . . . . . . 8
|
| 102 | 94, 101 | mpbird 167 |
. . . . . . 7
|
| 103 | breq1 4053 |
. . . . . . . . 9
| |
| 104 | breq1 4053 |
. . . . . . . . 9
| |
| 105 | 103, 104 | rexprg 3689 |
. . . . . . . 8
|
| 106 | 105 | ad2antrr 488 |
. . . . . . 7
|
| 107 | 102, 106 | mpbird 167 |
. . . . . 6
|
| 108 | 107 | ex 115 |
. . . . 5
|
| 109 | 108 | ralrimiva 2580 |
. . . 4
|
| 110 | breq2 4054 |
. . . . . . . 8
| |
| 111 | 110 | notbid 669 |
. . . . . . 7
|
| 112 | 111 | ralbidv 2507 |
. . . . . 6
|
| 113 | breq1 4053 |
. . . . . . . 8
| |
| 114 | 113 | imbi1d 231 |
. . . . . . 7
|
| 115 | 114 | ralbidv 2507 |
. . . . . 6
|
| 116 | 112, 115 | anbi12d 473 |
. . . . 5
|
| 117 | 116 | rspcev 2881 |
. . . 4
|
| 118 | 33, 77, 109, 117 | syl12anc 1248 |
. . 3
|
| 119 | prssi 3796 |
. . 3
| |
| 120 | 118, 119 | infxrnegsupex 11644 |
. 2
|
| 121 | 120, 45 | eqtrd 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 ax-caucvg 8060 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-isom 5288 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-frec 6489 df-sup 7100 df-inf 7101 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-n0 9311 df-z 9388 df-uz 9664 df-rp 9791 df-xneg 9909 df-seqfrec 10610 df-exp 10701 df-cj 11223 df-re 11224 df-im 11225 df-rsqrt 11379 df-abs 11380 |
| This theorem is referenced by: xrmincl 11647 xrmin1inf 11648 xrmin2inf 11649 xrmineqinf 11650 xrltmininf 11651 xrlemininf 11652 xrminltinf 11653 xrminrecl 11654 xrminrpcl 11655 xrminadd 11656 |
| Copyright terms: Public domain | W3C validator |