Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrminmax | Unicode version |
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.) |
Ref | Expression |
---|---|
xrminmax | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegcl 9789 | . . . . . . . . . . . 12 | |
2 | elprg 3603 | . . . . . . . . . . . 12 | |
3 | 1, 2 | syl 14 | . . . . . . . . . . 11 |
4 | 3 | adantl 275 | . . . . . . . . . 10 |
5 | simpr 109 | . . . . . . . . . . . . 13 | |
6 | simpll 524 | . . . . . . . . . . . . 13 | |
7 | 5, 6 | xrnegcon1d 11227 | . . . . . . . . . . . 12 |
8 | eqcom 2172 | . . . . . . . . . . . 12 | |
9 | 7, 8 | bitrdi 195 | . . . . . . . . . . 11 |
10 | simplr 525 | . . . . . . . . . . . . 13 | |
11 | 5, 10 | xrnegcon1d 11227 | . . . . . . . . . . . 12 |
12 | eqcom 2172 | . . . . . . . . . . . 12 | |
13 | 11, 12 | bitrdi 195 | . . . . . . . . . . 11 |
14 | 9, 13 | orbi12d 788 | . . . . . . . . . 10 |
15 | 4, 14 | bitrd 187 | . . . . . . . . 9 |
16 | 15 | rabbidva 2718 | . . . . . . . 8 |
17 | dfrab2 3402 | . . . . . . . . . 10 | |
18 | dfpr2 3602 | . . . . . . . . . . 11 | |
19 | 18 | ineq1i 3324 | . . . . . . . . . 10 |
20 | 17, 19 | eqtr4i 2194 | . . . . . . . . 9 |
21 | xnegcl 9789 | . . . . . . . . . . 11 | |
22 | xnegcl 9789 | . . . . . . . . . . 11 | |
23 | prssi 3738 | . . . . . . . . . . 11 | |
24 | 21, 22, 23 | syl2an 287 | . . . . . . . . . 10 |
25 | df-ss 3134 | . . . . . . . . . 10 | |
26 | 24, 25 | sylib 121 | . . . . . . . . 9 |
27 | 20, 26 | eqtrid 2215 | . . . . . . . 8 |
28 | 16, 27 | eqtrd 2203 | . . . . . . 7 |
29 | 28 | supeq1d 6964 | . . . . . 6 |
30 | xrmaxcl 11215 | . . . . . . 7 | |
31 | 21, 22, 30 | syl2an 287 | . . . . . 6 |
32 | 29, 31 | eqeltrd 2247 | . . . . 5 |
33 | 32 | xnegcld 9812 | . . . 4 |
34 | xnegeq 9784 | . . . . . . . . 9 | |
35 | 34 | adantl 275 | . . . . . . . 8 |
36 | xrmax1sup 11216 | . . . . . . . . . 10 | |
37 | 21, 22, 36 | syl2an 287 | . . . . . . . . 9 |
38 | 37 | ad2antrr 485 | . . . . . . . 8 |
39 | 35, 38 | eqbrtrd 4011 | . . . . . . 7 |
40 | simpll 524 | . . . . . . . 8 | |
41 | simpr 109 | . . . . . . . . 9 | |
42 | simplll 528 | . . . . . . . . 9 | |
43 | 41, 42 | eqeltrd 2247 | . . . . . . . 8 |
44 | xnegeq 9784 | . . . . . . . . . . . . 13 | |
45 | 29, 44 | syl 14 | . . . . . . . . . . . 12 |
46 | 45 | breq2d 4001 | . . . . . . . . . . 11 |
47 | 46 | notbid 662 | . . . . . . . . . 10 |
48 | 47 | adantr 274 | . . . . . . . . 9 |
49 | 31 | adantr 274 | . . . . . . . . . . 11 |
50 | 49 | xnegcld 9812 | . . . . . . . . . 10 |
51 | xrlenlt 7984 | . . . . . . . . . 10 | |
52 | 50, 51 | sylancom 418 | . . . . . . . . 9 |
53 | xleneg 9794 | . . . . . . . . . . 11 | |
54 | 50, 53 | sylancom 418 | . . . . . . . . . 10 |
55 | xnegneg 9790 | . . . . . . . . . . . 12 | |
56 | 49, 55 | syl 14 | . . . . . . . . . . 11 |
57 | 56 | breq2d 4001 | . . . . . . . . . 10 |
58 | 54, 57 | bitrd 187 | . . . . . . . . 9 |
59 | 48, 52, 58 | 3bitr2d 215 | . . . . . . . 8 |
60 | 40, 43, 59 | syl2anc 409 | . . . . . . 7 |
61 | 39, 60 | mpbird 166 | . . . . . 6 |
62 | xnegeq 9784 | . . . . . . . . 9 | |
63 | 62 | adantl 275 | . . . . . . . 8 |
64 | xrmax2sup 11217 | . . . . . . . . . 10 | |
65 | 21, 22, 64 | syl2an 287 | . . . . . . . . 9 |
66 | 65 | ad2antrr 485 | . . . . . . . 8 |
67 | 63, 66 | eqbrtrd 4011 | . . . . . . 7 |
68 | simpll 524 | . . . . . . . 8 | |
69 | simpr 109 | . . . . . . . . 9 | |
70 | simpllr 529 | . . . . . . . . 9 | |
71 | 69, 70 | eqeltrd 2247 | . . . . . . . 8 |
72 | 68, 71, 59 | syl2anc 409 | . . . . . . 7 |
73 | 67, 72 | mpbird 166 | . . . . . 6 |
74 | elpri 3606 | . . . . . . 7 | |
75 | 74 | adantl 275 | . . . . . 6 |
76 | 61, 73, 75 | mpjaodan 793 | . . . . 5 |
77 | 76 | ralrimiva 2543 | . . . 4 |
78 | 21 | ad3antrrr 489 | . . . . . . . . 9 |
79 | 22 | ad3antlr 490 | . . . . . . . . 9 |
80 | simplr 525 | . . . . . . . . . 10 | |
81 | 80 | xnegcld 9812 | . . . . . . . . 9 |
82 | simpr 109 | . . . . . . . . . . 11 | |
83 | 45 | breq1d 3999 | . . . . . . . . . . . 12 |
84 | 83 | ad2antrr 485 | . . . . . . . . . . 11 |
85 | 82, 84 | mpbid 146 | . . . . . . . . . 10 |
86 | 50 | adantr 274 | . . . . . . . . . . . 12 |
87 | xltneg 9793 | . . . . . . . . . . . 12 | |
88 | 86, 80, 87 | syl2anc 409 | . . . . . . . . . . 11 |
89 | 56 | breq2d 4001 | . . . . . . . . . . . 12 |
90 | 89 | adantr 274 | . . . . . . . . . . 11 |
91 | 88, 90 | bitrd 187 | . . . . . . . . . 10 |
92 | 85, 91 | mpbid 146 | . . . . . . . . 9 |
93 | xrmaxleastlt 11219 | . . . . . . . . 9 | |
94 | 78, 79, 81, 92, 93 | syl22anc 1234 | . . . . . . . 8 |
95 | simplll 528 | . . . . . . . . . 10 | |
96 | xltneg 9793 | . . . . . . . . . 10 | |
97 | 95, 80, 96 | syl2anc 409 | . . . . . . . . 9 |
98 | simpllr 529 | . . . . . . . . . 10 | |
99 | xltneg 9793 | . . . . . . . . . 10 | |
100 | 98, 80, 99 | syl2anc 409 | . . . . . . . . 9 |
101 | 97, 100 | orbi12d 788 | . . . . . . . 8 |
102 | 94, 101 | mpbird 166 | . . . . . . 7 |
103 | breq1 3992 | . . . . . . . . 9 | |
104 | breq1 3992 | . . . . . . . . 9 | |
105 | 103, 104 | rexprg 3635 | . . . . . . . 8 |
106 | 105 | ad2antrr 485 | . . . . . . 7 |
107 | 102, 106 | mpbird 166 | . . . . . 6 |
108 | 107 | ex 114 | . . . . 5 |
109 | 108 | ralrimiva 2543 | . . . 4 |
110 | breq2 3993 | . . . . . . . 8 | |
111 | 110 | notbid 662 | . . . . . . 7 |
112 | 111 | ralbidv 2470 | . . . . . 6 |
113 | breq1 3992 | . . . . . . . 8 | |
114 | 113 | imbi1d 230 | . . . . . . 7 |
115 | 114 | ralbidv 2470 | . . . . . 6 |
116 | 112, 115 | anbi12d 470 | . . . . 5 |
117 | 116 | rspcev 2834 | . . . 4 |
118 | 33, 77, 109, 117 | syl12anc 1231 | . . 3 |
119 | prssi 3738 | . . 3 | |
120 | 118, 119 | infxrnegsupex 11226 | . 2 inf |
121 | 120, 45 | eqtrd 2203 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 cab 2156 wral 2448 wrex 2449 crab 2452 cin 3120 wss 3121 cpr 3584 class class class wbr 3989 csup 6959 infcinf 6960 cxr 7953 clt 7954 cle 7955 cxne 9726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-xneg 9729 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 |
This theorem is referenced by: xrmincl 11229 xrmin1inf 11230 xrmin2inf 11231 xrmineqinf 11232 xrltmininf 11233 xrlemininf 11234 xrminltinf 11235 xrminrecl 11236 xrminrpcl 11237 xrminadd 11238 |
Copyright terms: Public domain | W3C validator |