ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminmax Unicode version

Theorem xrminmax 11257
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.)
Assertion
Ref Expression
xrminmax  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )

Proof of Theorem xrminmax
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xnegcl 9819 . . . . . . . . . . . 12  |-  ( z  e.  RR*  ->  -e
z  e.  RR* )
2 elprg 3611 . . . . . . . . . . . 12  |-  (  -e z  e.  RR*  ->  (  -e z  e.  { A ,  B }  <->  (  -e
z  =  A  \/  -e z  =  B ) ) )
31, 2syl 14 . . . . . . . . . . 11  |-  ( z  e.  RR*  ->  (  -e z  e.  { A ,  B }  <->  ( 
-e z  =  A  \/  -e
z  =  B ) ) )
43adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  e.  { A ,  B }  <->  (  -e
z  =  A  \/  -e z  =  B ) ) )
5 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  z  e.  RR* )
6 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  A  e.  RR* )
75, 6xrnegcon1d 11256 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  =  A  <->  -e A  =  z ) )
8 eqcom 2179 . . . . . . . . . . . 12  |-  (  -e A  =  z  <->  z  =  -e A )
97, 8bitrdi 196 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  =  A  <->  z  =  -e A ) )
10 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  B  e.  RR* )
115, 10xrnegcon1d 11256 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  =  B  <->  -e B  =  z ) )
12 eqcom 2179 . . . . . . . . . . . 12  |-  (  -e B  =  z  <->  z  =  -e B )
1311, 12bitrdi 196 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  =  B  <->  z  =  -e B ) )
149, 13orbi12d 793 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  ( (  -e
z  =  A  \/  -e z  =  B )  <->  ( z  = 
-e A  \/  z  =  -e B ) ) )
154, 14bitrd 188 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  z  e.  RR* )  ->  (  -e z  e.  { A ,  B }  <->  ( z  = 
-e A  \/  z  =  -e B ) ) )
1615rabbidva 2725 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  { z  e.  RR*  |  -e
z  e.  { A ,  B } }  =  { z  e.  RR*  |  ( z  =  -e A  \/  z  =  -e B ) } )
17 dfrab2 3410 . . . . . . . . . 10  |-  { z  e.  RR*  |  (
z  =  -e
A  \/  z  = 
-e B ) }  =  ( { z  |  ( z  =  -e A  \/  z  =  -e B ) }  i^i  RR* )
18 dfpr2 3610 . . . . . . . . . . 11  |-  {  -e
A ,  -e
B }  =  {
z  |  ( z  =  -e A  \/  z  =  -e B ) }
1918ineq1i 3332 . . . . . . . . . 10  |-  ( { 
-e A ,  -e B }  i^i  RR* )  =  ( { z  |  ( z  =  -e A  \/  z  =  -e B ) }  i^i  RR* )
2017, 19eqtr4i 2201 . . . . . . . . 9  |-  { z  e.  RR*  |  (
z  =  -e
A  \/  z  = 
-e B ) }  =  ( { 
-e A ,  -e B }  i^i  RR* )
21 xnegcl 9819 . . . . . . . . . . 11  |-  ( A  e.  RR*  ->  -e
A  e.  RR* )
22 xnegcl 9819 . . . . . . . . . . 11  |-  ( B  e.  RR*  ->  -e
B  e.  RR* )
23 prssi 3749 . . . . . . . . . . 11  |-  ( ( 
-e A  e. 
RR*  /\  -e B  e.  RR* )  ->  {  -e
A ,  -e
B }  C_  RR* )
2421, 22, 23syl2an 289 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  {  -e
A ,  -e
B }  C_  RR* )
25 df-ss 3142 . . . . . . . . . 10  |-  ( { 
-e A ,  -e B }  C_  RR*  <->  ( {  -e A ,  -e B }  i^i  RR* )  =  {  -e A ,  -e B } )
2624, 25sylib 122 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( {  -e A ,  -e B }  i^i  RR* )  =  {  -e
A ,  -e
B } )
2720, 26eqtrid 2222 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  { z  e.  RR*  |  (
z  =  -e
A  \/  z  = 
-e B ) }  =  {  -e
A ,  -e
B } )
2816, 27eqtrd 2210 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  { z  e.  RR*  |  -e
z  e.  { A ,  B } }  =  {  -e A ,  -e B } )
2928supeq1d 6980 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  =  sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) )
30 xrmaxcl 11244 . . . . . . 7  |-  ( ( 
-e A  e. 
RR*  /\  -e B  e.  RR* )  ->  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e.  RR* )
3121, 22, 30syl2an 289 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e.  RR* )
3229, 31eqeltrd 2254 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  e.  RR* )
3332xnegcld 9842 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  e.  RR* )
34 xnegeq 9814 . . . . . . . . 9  |-  ( y  =  A  ->  -e
y  =  -e
A )
3534adantl 277 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  -e
y  =  -e
A )
36 xrmax1sup 11245 . . . . . . . . . 10  |-  ( ( 
-e A  e. 
RR*  /\  -e B  e.  RR* )  ->  -e
A  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
3721, 22, 36syl2an 289 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e
A  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
3837ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  -e
A  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
3935, 38eqbrtrd 4022 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  -e
y  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
40 simpll 527 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
41 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  y  =  A )
42 simplll 533 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  A  e.  RR* )
4341, 42eqeltrd 2254 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  y  e.  RR* )
44 xnegeq 9814 . . . . . . . . . . . . 13  |-  ( sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  =  sup ( {  -e A ,  -e B } ,  RR* ,  <  )  ->  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  =  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
4529, 44syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  =  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
4645breq2d 4012 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <->  y  <  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
4746notbid 667 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <->  -.  y  <  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) ) )
4847adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  ( -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  <->  -.  y  <  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
4931adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR* )
5049xnegcld 9842 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  -> 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e. 
RR* )
51 xrlenlt 8012 . . . . . . . . . 10  |-  ( ( 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e. 
RR*  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -.  y  <  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
5250, 51sylancom 420 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -.  y  <  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
53 xleneg 9824 . . . . . . . . . . 11  |-  ( ( 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e. 
RR*  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -e y  <_  -e  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
5450, 53sylancom 420 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -e y  <_  -e  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
55 xnegneg 9820 . . . . . . . . . . . 12  |-  ( sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR*  -> 
-e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  =  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
5649, 55syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  -> 
-e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  =  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
5756breq2d 4012 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e y  <_  -e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <->  -e y  <_  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
5854, 57bitrd 188 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <_  y  <->  -e y  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) ) )
5948, 52, 583bitr2d 216 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  ( -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  <->  -e y  <_  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
6040, 43, 59syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  ( -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <->  -e y  <_  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
6139, 60mpbird 167 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  A )  ->  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  ) )
62 xnegeq 9814 . . . . . . . . 9  |-  ( y  =  B  ->  -e
y  =  -e
B )
6362adantl 277 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  -e
y  =  -e
B )
64 xrmax2sup 11246 . . . . . . . . . 10  |-  ( ( 
-e A  e. 
RR*  /\  -e B  e.  RR* )  ->  -e
B  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
6521, 22, 64syl2an 289 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e
B  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
6665ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  -e
B  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
6763, 66eqbrtrd 4022 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  -e
y  <_  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
68 simpll 527 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
69 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  y  =  B )
70 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  B  e.  RR* )
7169, 70eqeltrd 2254 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  y  e.  RR* )
7268, 71, 59syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  ( -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <->  -e y  <_  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
7367, 72mpbird 167 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
{ A ,  B } )  /\  y  =  B )  ->  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  ) )
74 elpri 3614 . . . . . . 7  |-  ( y  e.  { A ,  B }  ->  ( y  =  A  \/  y  =  B ) )
7574adantl 277 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  { A ,  B } )  -> 
( y  =  A  \/  y  =  B ) )
7661, 73, 75mpjaodan 798 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  { A ,  B } )  ->  -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  ) )
7776ralrimiva 2550 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A. y  e.  { A ,  B }  -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  ) )
7821ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e A  e.  RR* )
7922ad3antlr 493 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e B  e.  RR* )
80 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  y  e.  RR* )
8180xnegcld 9842 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e y  e.  RR* )
82 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)
8345breq1d 4010 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (  -e sup ( { z  e.  RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  <->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y
) )
8483ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  <->  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  )  < 
y ) )
8582, 84mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y
)
8650adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  e.  RR* )
87 xltneg 9823 . . . . . . . . . . . 12  |-  ( ( 
-e sup ( {  -e A ,  -e B } ,  RR* ,  <  )  e. 
RR*  /\  y  e.  RR* )  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y  <->  -e y  <  -e  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
8886, 80, 87syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y  <->  -e y  <  -e  -e sup ( { 
-e A ,  -e B } ,  RR* ,  <  ) ) )
8956breq2d 4012 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e y  <  -e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <->  -e y  <  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
9089adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e
y  <  -e  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <->  -e y  <  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) ) )
9188, 90bitrd 188 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e sup ( {  -e
A ,  -e
B } ,  RR* ,  <  )  <  y  <->  -e y  <  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) ) )
9285, 91mpbid 147 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  -e y  <  sup ( {  -e
A ,  -e
B } ,  RR* ,  <  ) )
93 xrmaxleastlt 11248 . . . . . . . . 9  |-  ( ( (  -e A  e.  RR*  /\  -e
B  e.  RR* )  /\  (  -e y  e.  RR*  /\  -e
y  <  sup ( {  -e A ,  -e B } ,  RR* ,  <  ) ) )  ->  (  -e
y  <  -e A  \/  -e y  <  -e B ) )
9478, 79, 81, 92, 93syl22anc 1239 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  (  -e
y  <  -e A  \/  -e y  <  -e B ) )
95 simplll 533 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  A  e.  RR* )
96 xltneg 9823 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  y  e.  RR* )  ->  ( A  <  y  <->  -e y  <  -e A ) )
9795, 80, 96syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( A  <  y  <->  -e y  <  -e A ) )
98 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  B  e.  RR* )
99 xltneg 9823 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  y  e.  RR* )  ->  ( B  <  y  <->  -e y  <  -e B ) )
10098, 80, 99syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( B  <  y  <->  -e y  <  -e B ) )
10197, 100orbi12d 793 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( ( A  <  y  \/  B  <  y )  <->  (  -e
y  <  -e A  \/  -e y  <  -e B ) ) )
10294, 101mpbird 167 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( A  <  y  \/  B  < 
y ) )
103 breq1 4003 . . . . . . . . 9  |-  ( z  =  A  ->  (
z  <  y  <->  A  <  y ) )
104 breq1 4003 . . . . . . . . 9  |-  ( z  =  B  ->  (
z  <  y  <->  B  <  y ) )
105103, 104rexprg 3643 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. z  e.  { A ,  B } z  < 
y  <->  ( A  < 
y  \/  B  < 
y ) ) )
106105ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  ( E. z  e.  { A ,  B } z  < 
y  <->  ( A  < 
y  \/  B  < 
y ) ) )
107102, 106mpbird 167 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  y  e. 
RR* )  /\  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
)  ->  E. z  e.  { A ,  B } z  <  y
)
108107ex 115 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  y  e.  RR* )  ->  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
)
109108ralrimiva 2550 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A. y  e.  RR*  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
)
110 breq2 4004 . . . . . . . 8  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  (
y  <  x  <->  y  <  -e sup ( { z  e.  RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  ) ) )
111110notbid 667 . . . . . . 7  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  ( -.  y  <  x  <->  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  ) ) )
112111ralbidv 2477 . . . . . 6  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  ( A. y  e.  { A ,  B }  -.  y  <  x  <->  A. y  e.  { A ,  B }  -.  y  <  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  ) ) )
113 breq1 4003 . . . . . . . 8  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  (
x  <  y  <->  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y
) )
114113imbi1d 231 . . . . . . 7  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  (
( x  <  y  ->  E. z  e.  { A ,  B }
z  <  y )  <->  ( 
-e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B } z  <  y
) ) )
115114ralbidv 2477 . . . . . 6  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  ( A. y  e.  RR*  (
x  <  y  ->  E. z  e.  { A ,  B } z  < 
y )  <->  A. y  e.  RR*  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
) )
116112, 115anbi12d 473 . . . . 5  |-  ( x  =  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  ->  (
( A. y  e. 
{ A ,  B }  -.  y  <  x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) )  <->  ( A. y  e.  { A ,  B }  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  /\  A. y  e. 
RR*  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
) ) )
117116rspcev 2841 . . . 4  |-  ( ( 
-e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  e.  RR*  /\  ( A. y  e.  { A ,  B }  -.  y  <  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  )  /\  A. y  e. 
RR*  (  -e sup ( { z  e. 
RR*  |  -e z  e.  { A ,  B } } ,  RR* ,  <  )  <  y  ->  E. z  e.  { A ,  B }
z  <  y )
) )  ->  E. x  e.  RR*  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
11833, 77, 109, 117syl12anc 1236 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  E. x  e.  RR*  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
119 prssi 3749 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  { A ,  B }  C_  RR* )
120118, 119infxrnegsupex 11255 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( { z  e.  RR*  | 
-e z  e. 
{ A ,  B } } ,  RR* ,  <  ) )
121120, 45eqtrd 2210 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   {crab 2459    i^i cin 3128    C_ wss 3129   {cpr 3592   class class class wbr 4000   supcsup 6975  infcinf 6976   RR*cxr 7981    < clt 7982    <_ cle 7983    -ecxne 9756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-xneg 9759  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  xrmincl  11258  xrmin1inf  11259  xrmin2inf  11260  xrmineqinf  11261  xrltmininf  11262  xrlemininf  11263  xrminltinf  11264  xrminrecl  11265  xrminrpcl  11266  xrminadd  11267
  Copyright terms: Public domain W3C validator