| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xrminmax | Unicode version | ||
| Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.) | 
| Ref | Expression | 
|---|---|
| xrminmax | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xnegcl 9907 | 
. . . . . . . . . . . 12
 | |
| 2 | elprg 3642 | 
. . . . . . . . . . . 12
 | |
| 3 | 1, 2 | syl 14 | 
. . . . . . . . . . 11
 | 
| 4 | 3 | adantl 277 | 
. . . . . . . . . 10
 | 
| 5 | simpr 110 | 
. . . . . . . . . . . . 13
 | |
| 6 | simpll 527 | 
. . . . . . . . . . . . 13
 | |
| 7 | 5, 6 | xrnegcon1d 11429 | 
. . . . . . . . . . . 12
 | 
| 8 | eqcom 2198 | 
. . . . . . . . . . . 12
 | |
| 9 | 7, 8 | bitrdi 196 | 
. . . . . . . . . . 11
 | 
| 10 | simplr 528 | 
. . . . . . . . . . . . 13
 | |
| 11 | 5, 10 | xrnegcon1d 11429 | 
. . . . . . . . . . . 12
 | 
| 12 | eqcom 2198 | 
. . . . . . . . . . . 12
 | |
| 13 | 11, 12 | bitrdi 196 | 
. . . . . . . . . . 11
 | 
| 14 | 9, 13 | orbi12d 794 | 
. . . . . . . . . 10
 | 
| 15 | 4, 14 | bitrd 188 | 
. . . . . . . . 9
 | 
| 16 | 15 | rabbidva 2751 | 
. . . . . . . 8
 | 
| 17 | dfrab2 3438 | 
. . . . . . . . . 10
 | |
| 18 | dfpr2 3641 | 
. . . . . . . . . . 11
 | |
| 19 | 18 | ineq1i 3360 | 
. . . . . . . . . 10
 | 
| 20 | 17, 19 | eqtr4i 2220 | 
. . . . . . . . 9
 | 
| 21 | xnegcl 9907 | 
. . . . . . . . . . 11
 | |
| 22 | xnegcl 9907 | 
. . . . . . . . . . 11
 | |
| 23 | prssi 3780 | 
. . . . . . . . . . 11
 | |
| 24 | 21, 22, 23 | syl2an 289 | 
. . . . . . . . . 10
 | 
| 25 | df-ss 3170 | 
. . . . . . . . . 10
 | |
| 26 | 24, 25 | sylib 122 | 
. . . . . . . . 9
 | 
| 27 | 20, 26 | eqtrid 2241 | 
. . . . . . . 8
 | 
| 28 | 16, 27 | eqtrd 2229 | 
. . . . . . 7
 | 
| 29 | 28 | supeq1d 7053 | 
. . . . . 6
 | 
| 30 | xrmaxcl 11417 | 
. . . . . . 7
 | |
| 31 | 21, 22, 30 | syl2an 289 | 
. . . . . 6
 | 
| 32 | 29, 31 | eqeltrd 2273 | 
. . . . 5
 | 
| 33 | 32 | xnegcld 9930 | 
. . . 4
 | 
| 34 | xnegeq 9902 | 
. . . . . . . . 9
 | |
| 35 | 34 | adantl 277 | 
. . . . . . . 8
 | 
| 36 | xrmax1sup 11418 | 
. . . . . . . . . 10
 | |
| 37 | 21, 22, 36 | syl2an 289 | 
. . . . . . . . 9
 | 
| 38 | 37 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 39 | 35, 38 | eqbrtrd 4055 | 
. . . . . . 7
 | 
| 40 | simpll 527 | 
. . . . . . . 8
 | |
| 41 | simpr 110 | 
. . . . . . . . 9
 | |
| 42 | simplll 533 | 
. . . . . . . . 9
 | |
| 43 | 41, 42 | eqeltrd 2273 | 
. . . . . . . 8
 | 
| 44 | xnegeq 9902 | 
. . . . . . . . . . . . 13
 | |
| 45 | 29, 44 | syl 14 | 
. . . . . . . . . . . 12
 | 
| 46 | 45 | breq2d 4045 | 
. . . . . . . . . . 11
 | 
| 47 | 46 | notbid 668 | 
. . . . . . . . . 10
 | 
| 48 | 47 | adantr 276 | 
. . . . . . . . 9
 | 
| 49 | 31 | adantr 276 | 
. . . . . . . . . . 11
 | 
| 50 | 49 | xnegcld 9930 | 
. . . . . . . . . 10
 | 
| 51 | xrlenlt 8091 | 
. . . . . . . . . 10
 | |
| 52 | 50, 51 | sylancom 420 | 
. . . . . . . . 9
 | 
| 53 | xleneg 9912 | 
. . . . . . . . . . 11
 | |
| 54 | 50, 53 | sylancom 420 | 
. . . . . . . . . 10
 | 
| 55 | xnegneg 9908 | 
. . . . . . . . . . . 12
 | |
| 56 | 49, 55 | syl 14 | 
. . . . . . . . . . 11
 | 
| 57 | 56 | breq2d 4045 | 
. . . . . . . . . 10
 | 
| 58 | 54, 57 | bitrd 188 | 
. . . . . . . . 9
 | 
| 59 | 48, 52, 58 | 3bitr2d 216 | 
. . . . . . . 8
 | 
| 60 | 40, 43, 59 | syl2anc 411 | 
. . . . . . 7
 | 
| 61 | 39, 60 | mpbird 167 | 
. . . . . 6
 | 
| 62 | xnegeq 9902 | 
. . . . . . . . 9
 | |
| 63 | 62 | adantl 277 | 
. . . . . . . 8
 | 
| 64 | xrmax2sup 11419 | 
. . . . . . . . . 10
 | |
| 65 | 21, 22, 64 | syl2an 289 | 
. . . . . . . . 9
 | 
| 66 | 65 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 67 | 63, 66 | eqbrtrd 4055 | 
. . . . . . 7
 | 
| 68 | simpll 527 | 
. . . . . . . 8
 | |
| 69 | simpr 110 | 
. . . . . . . . 9
 | |
| 70 | simpllr 534 | 
. . . . . . . . 9
 | |
| 71 | 69, 70 | eqeltrd 2273 | 
. . . . . . . 8
 | 
| 72 | 68, 71, 59 | syl2anc 411 | 
. . . . . . 7
 | 
| 73 | 67, 72 | mpbird 167 | 
. . . . . 6
 | 
| 74 | elpri 3645 | 
. . . . . . 7
 | |
| 75 | 74 | adantl 277 | 
. . . . . 6
 | 
| 76 | 61, 73, 75 | mpjaodan 799 | 
. . . . 5
 | 
| 77 | 76 | ralrimiva 2570 | 
. . . 4
 | 
| 78 | 21 | ad3antrrr 492 | 
. . . . . . . . 9
 | 
| 79 | 22 | ad3antlr 493 | 
. . . . . . . . 9
 | 
| 80 | simplr 528 | 
. . . . . . . . . 10
 | |
| 81 | 80 | xnegcld 9930 | 
. . . . . . . . 9
 | 
| 82 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 83 | 45 | breq1d 4043 | 
. . . . . . . . . . . 12
 | 
| 84 | 83 | ad2antrr 488 | 
. . . . . . . . . . 11
 | 
| 85 | 82, 84 | mpbid 147 | 
. . . . . . . . . 10
 | 
| 86 | 50 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 87 | xltneg 9911 | 
. . . . . . . . . . . 12
 | |
| 88 | 86, 80, 87 | syl2anc 411 | 
. . . . . . . . . . 11
 | 
| 89 | 56 | breq2d 4045 | 
. . . . . . . . . . . 12
 | 
| 90 | 89 | adantr 276 | 
. . . . . . . . . . 11
 | 
| 91 | 88, 90 | bitrd 188 | 
. . . . . . . . . 10
 | 
| 92 | 85, 91 | mpbid 147 | 
. . . . . . . . 9
 | 
| 93 | xrmaxleastlt 11421 | 
. . . . . . . . 9
 | |
| 94 | 78, 79, 81, 92, 93 | syl22anc 1250 | 
. . . . . . . 8
 | 
| 95 | simplll 533 | 
. . . . . . . . . 10
 | |
| 96 | xltneg 9911 | 
. . . . . . . . . 10
 | |
| 97 | 95, 80, 96 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 98 | simpllr 534 | 
. . . . . . . . . 10
 | |
| 99 | xltneg 9911 | 
. . . . . . . . . 10
 | |
| 100 | 98, 80, 99 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 101 | 97, 100 | orbi12d 794 | 
. . . . . . . 8
 | 
| 102 | 94, 101 | mpbird 167 | 
. . . . . . 7
 | 
| 103 | breq1 4036 | 
. . . . . . . . 9
 | |
| 104 | breq1 4036 | 
. . . . . . . . 9
 | |
| 105 | 103, 104 | rexprg 3674 | 
. . . . . . . 8
 | 
| 106 | 105 | ad2antrr 488 | 
. . . . . . 7
 | 
| 107 | 102, 106 | mpbird 167 | 
. . . . . 6
 | 
| 108 | 107 | ex 115 | 
. . . . 5
 | 
| 109 | 108 | ralrimiva 2570 | 
. . . 4
 | 
| 110 | breq2 4037 | 
. . . . . . . 8
 | |
| 111 | 110 | notbid 668 | 
. . . . . . 7
 | 
| 112 | 111 | ralbidv 2497 | 
. . . . . 6
 | 
| 113 | breq1 4036 | 
. . . . . . . 8
 | |
| 114 | 113 | imbi1d 231 | 
. . . . . . 7
 | 
| 115 | 114 | ralbidv 2497 | 
. . . . . 6
 | 
| 116 | 112, 115 | anbi12d 473 | 
. . . . 5
 | 
| 117 | 116 | rspcev 2868 | 
. . . 4
 | 
| 118 | 33, 77, 109, 117 | syl12anc 1247 | 
. . 3
 | 
| 119 | prssi 3780 | 
. . 3
 | |
| 120 | 118, 119 | infxrnegsupex 11428 | 
. 2
 | 
| 121 | 120, 45 | eqtrd 2229 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-xneg 9847 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 | 
| This theorem is referenced by: xrmincl 11431 xrmin1inf 11432 xrmin2inf 11433 xrmineqinf 11434 xrltmininf 11435 xrlemininf 11436 xrminltinf 11437 xrminrecl 11438 xrminrpcl 11439 xrminadd 11440 | 
| Copyright terms: Public domain | W3C validator |