ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minmax Unicode version

Theorem minmax 11222
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
Assertion
Ref Expression
minmax  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )

Proof of Theorem minmax
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegcl 8208 . . . . . . . . . . . 12  |-  ( z  e.  RR  ->  -u z  e.  RR )
2 elprg 3611 . . . . . . . . . . . 12  |-  ( -u z  e.  RR  ->  (
-u z  e.  { A ,  B }  <->  (
-u z  =  A  \/  -u z  =  B ) ) )
31, 2syl 14 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  ( -u z  e.  { A ,  B }  <->  ( -u z  =  A  \/  -u z  =  B ) ) )
43adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  e.  { A ,  B } 
<->  ( -u z  =  A  \/  -u z  =  B ) ) )
5 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  z  e.  RR )
65recnd 7976 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  z  e.  CC )
7 simpll 527 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  A  e.  RR )
87recnd 7976 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  A  e.  CC )
96, 8negcon1d 8252 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  A  <->  -u A  =  z ) )
10 eqcom 2179 . . . . . . . . . . . 12  |-  ( -u A  =  z  <->  z  =  -u A )
119, 10bitrdi 196 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  A  <->  z  =  -u A ) )
12 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  B  e.  RR )
1312recnd 7976 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  B  e.  CC )
146, 13negcon1d 8252 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  B  <->  -u B  =  z ) )
15 eqcom 2179 . . . . . . . . . . . 12  |-  ( -u B  =  z  <->  z  =  -u B )
1614, 15bitrdi 196 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  B  <->  z  =  -u B ) )
1711, 16orbi12d 793 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( ( -u z  =  A  \/  -u z  =  B )  <-> 
( z  =  -u A  \/  z  =  -u B ) ) )
184, 17bitrd 188 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  e.  { A ,  B } 
<->  ( z  =  -u A  \/  z  =  -u B ) ) )
1918rabbidva 2725 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  -u z  e.  { A ,  B } }  =  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B ) } )
20 dfrab2 3410 . . . . . . . . . 10  |-  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B
) }  =  ( { z  |  ( z  =  -u A  \/  z  =  -u B
) }  i^i  RR )
21 dfpr2 3610 . . . . . . . . . . 11  |-  { -u A ,  -u B }  =  { z  |  ( z  =  -u A  \/  z  =  -u B
) }
2221ineq1i 3332 . . . . . . . . . 10  |-  ( {
-u A ,  -u B }  i^i  RR )  =  ( { z  |  ( z  = 
-u A  \/  z  =  -u B ) }  i^i  RR )
2320, 22eqtr4i 2201 . . . . . . . . 9  |-  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B
) }  =  ( { -u A ,  -u B }  i^i  RR )
24 renegcl 8208 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  -u A  e.  RR )
25 renegcl 8208 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  -u B  e.  RR )
26 prssi 3749 . . . . . . . . . . 11  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  { -u A ,  -u B }  C_  RR )
2724, 25, 26syl2an 289 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { -u A ,  -u B }  C_  RR )
28 df-ss 3142 . . . . . . . . . 10  |-  ( {
-u A ,  -u B }  C_  RR  <->  ( { -u A ,  -u B }  i^i  RR )  =  { -u A ,  -u B } )
2927, 28sylib 122 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( { -u A ,  -u B }  i^i  RR )  =  { -u A ,  -u B }
)
3023, 29eqtrid 2222 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  ( z  = 
-u A  \/  z  =  -u B ) }  =  { -u A ,  -u B } )
3119, 30eqtrd 2210 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  -u z  e.  { A ,  B } }  =  { -u A ,  -u B } )
3231supeq1d 6980 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  =  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
33 maxcl 11203 . . . . . . 7  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
3424, 25, 33syl2an 289 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
3532, 34eqeltrd 2254 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR )
3635renegcld 8327 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR )
37 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  y  =  A )
3837negeqd 8142 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u y  =  -u A )
39 maxle1 11204 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  -u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
4024, 25, 39syl2an 289 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
4140ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
4238, 41eqbrtrd 4022 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
43 simpll 527 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( A  e.  RR  /\  B  e.  RR ) )
44 simplll 533 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  A  e.  RR )
4537, 44eqeltrd 2254 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  y  e.  RR )
4632negeqd 8142 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  = 
-u sup ( { -u A ,  -u B } ,  RR ,  <  )
)
4746breq2d 4012 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  y  <  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
4847notbid 667 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -.  y  <  -u sup ( {
-u A ,  -u B } ,  RR ,  <  ) ) )
4948adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -.  y  <  -u sup ( {
-u A ,  -u B } ,  RR ,  <  ) ) )
5034adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
5150renegcld 8327 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  -u sup ( {
-u A ,  -u B } ,  RR ,  <  )  e.  RR )
52 simpr 110 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  y  e.  RR )
5351, 52lenltd 8065 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -.  y  <  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
54 lenegcon1 8413 . . . . . . . . . 10  |-  ( ( sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR  /\  y  e.  RR )  ->  ( -u
sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5534, 54sylan 283 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5649, 53, 553bitr2d 216 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5743, 45, 56syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5842, 57mpbird 167 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
59 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  y  =  B )
6059negeqd 8142 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u y  =  -u B )
61 maxle2 11205 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  -u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
6224, 25, 61syl2an 289 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
6362ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
6460, 63eqbrtrd 4022 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
65 simpll 527 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( A  e.  RR  /\  B  e.  RR ) )
66 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  B  e.  RR )
6759, 66eqeltrd 2254 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  y  e.  RR )
6865, 67, 56syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
6964, 68mpbird 167 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
70 elpri 3614 . . . . . . 7  |-  ( y  e.  { A ,  B }  ->  ( y  =  A  \/  y  =  B ) )
7170adantl 277 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B }
)  ->  ( y  =  A  \/  y  =  B ) )
7258, 69, 71mpjaodan 798 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B }
)  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
7372ralrimiva 2550 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
7424ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u A  e.  RR )
7525ad3antlr 493 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u B  e.  RR )
76 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  y  e.  RR )
7776renegcld 8327 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u y  e.  RR )
7834ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
79 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y )
8046breq1d 4010 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  <->  -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <  y ) )
8180ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  <->  -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <  y ) )
8279, 81mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u sup ( {
-u A ,  -u B } ,  RR ,  <  )  <  y )
8378, 76, 82ltnegcon1d 8472 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u y  <  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
84 maxleastlt 11208 . . . . . . . . 9  |-  ( ( ( -u A  e.  RR  /\  -u B  e.  RR )  /\  ( -u y  e.  RR  /\  -u y  <  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )  -> 
( -u y  <  -u A  \/  -u y  <  -u B
) )
8574, 75, 77, 83, 84syl22anc 1239 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( -u y  <  -u A  \/  -u y  <  -u B ) )
86 simplll 533 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  A  e.  RR )
8786, 76ltnegd 8470 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( A  < 
y  <->  -u y  <  -u A
) )
88 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  B  e.  RR )
8988, 76ltnegd 8470 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( B  < 
y  <->  -u y  <  -u B
) )
9087, 89orbi12d 793 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( ( A  <  y  \/  B  <  y )  <->  ( -u y  <  -u A  \/  -u y  <  -u B ) ) )
9185, 90mpbird 167 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( A  < 
y  \/  B  < 
y ) )
92 breq1 4003 . . . . . . . . 9  |-  ( z  =  A  ->  (
z  <  y  <->  A  <  y ) )
93 breq1 4003 . . . . . . . . 9  |-  ( z  =  B  ->  (
z  <  y  <->  B  <  y ) )
9492, 93rexprg 3643 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( E. z  e. 
{ A ,  B } z  <  y  <->  ( A  <  y  \/  B  <  y ) ) )
9594ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( E. z  e.  { A ,  B } z  <  y  <->  ( A  <  y  \/  B  <  y ) ) )
9691, 95mpbird 167 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  E. z  e.  { A ,  B }
z  <  y )
9796ex 115 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) )
9897ralrimiva 2550 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. y  e.  RR  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) )
99 breq2 4004 . . . . . . . 8  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( y  <  x  <->  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
10099notbid 667 . . . . . . 7  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( -.  y  < 
x  <->  -.  y  <  -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
101100ralbidv 2477 . . . . . 6  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( A. y  e. 
{ A ,  B }  -.  y  <  x  <->  A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
102 breq1 4003 . . . . . . . 8  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( x  <  y  <->  -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y ) )
103102imbi1d 231 . . . . . . 7  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( ( x  < 
y  ->  E. z  e.  { A ,  B } z  <  y
)  <->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
104103ralbidv 2477 . . . . . 6  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( A. y  e.  RR  ( x  < 
y  ->  E. z  e.  { A ,  B } z  <  y
)  <->  A. y  e.  RR  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) )
105101, 104anbi12d 473 . . . . 5  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) )  <->  ( A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  /\  A. y  e.  RR  ( -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) ) )
106105rspcev 2841 . . . 4  |-  ( (
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  /\  A. y  e.  RR  ( -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
10736, 73, 98, 106syl12anc 1236 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
108 prssi 3749 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { A ,  B }  C_  RR )
109107, 108infrenegsupex 9583 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
110109, 46eqtrd 2210 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   {crab 2459    i^i cin 3128    C_ wss 3129   {cpr 3592   class class class wbr 4000   supcsup 6975  infcinf 6976   RRcr 7801    < clt 7982    <_ cle 7983   -ucneg 8119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  mincl  11223  min1inf  11224  min2inf  11225  lemininf  11226  ltmininf  11227  minabs  11228  minclpr  11229  mingeb  11234  xrminrecl  11265
  Copyright terms: Public domain W3C validator