ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minmax Unicode version

Theorem minmax 10994
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
Assertion
Ref Expression
minmax  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )

Proof of Theorem minmax
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegcl 8016 . . . . . . . . . . . 12  |-  ( z  e.  RR  ->  -u z  e.  RR )
2 elprg 3542 . . . . . . . . . . . 12  |-  ( -u z  e.  RR  ->  (
-u z  e.  { A ,  B }  <->  (
-u z  =  A  \/  -u z  =  B ) ) )
31, 2syl 14 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  ( -u z  e.  { A ,  B }  <->  ( -u z  =  A  \/  -u z  =  B ) ) )
43adantl 275 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  e.  { A ,  B } 
<->  ( -u z  =  A  \/  -u z  =  B ) ) )
5 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  z  e.  RR )
65recnd 7787 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  z  e.  CC )
7 simpll 518 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  A  e.  RR )
87recnd 7787 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  A  e.  CC )
96, 8negcon1d 8060 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  A  <->  -u A  =  z ) )
10 eqcom 2139 . . . . . . . . . . . 12  |-  ( -u A  =  z  <->  z  =  -u A )
119, 10syl6bb 195 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  A  <->  z  =  -u A ) )
12 simplr 519 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  B  e.  RR )
1312recnd 7787 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  B  e.  CC )
146, 13negcon1d 8060 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  B  <->  -u B  =  z ) )
15 eqcom 2139 . . . . . . . . . . . 12  |-  ( -u B  =  z  <->  z  =  -u B )
1614, 15syl6bb 195 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  B  <->  z  =  -u B ) )
1711, 16orbi12d 782 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( ( -u z  =  A  \/  -u z  =  B )  <-> 
( z  =  -u A  \/  z  =  -u B ) ) )
184, 17bitrd 187 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  e.  { A ,  B } 
<->  ( z  =  -u A  \/  z  =  -u B ) ) )
1918rabbidva 2669 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  -u z  e.  { A ,  B } }  =  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B ) } )
20 dfrab2 3346 . . . . . . . . . 10  |-  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B
) }  =  ( { z  |  ( z  =  -u A  \/  z  =  -u B
) }  i^i  RR )
21 dfpr2 3541 . . . . . . . . . . 11  |-  { -u A ,  -u B }  =  { z  |  ( z  =  -u A  \/  z  =  -u B
) }
2221ineq1i 3268 . . . . . . . . . 10  |-  ( {
-u A ,  -u B }  i^i  RR )  =  ( { z  |  ( z  = 
-u A  \/  z  =  -u B ) }  i^i  RR )
2320, 22eqtr4i 2161 . . . . . . . . 9  |-  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B
) }  =  ( { -u A ,  -u B }  i^i  RR )
24 renegcl 8016 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  -u A  e.  RR )
25 renegcl 8016 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  -u B  e.  RR )
26 prssi 3673 . . . . . . . . . . 11  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  { -u A ,  -u B }  C_  RR )
2724, 25, 26syl2an 287 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { -u A ,  -u B }  C_  RR )
28 df-ss 3079 . . . . . . . . . 10  |-  ( {
-u A ,  -u B }  C_  RR  <->  ( { -u A ,  -u B }  i^i  RR )  =  { -u A ,  -u B } )
2927, 28sylib 121 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( { -u A ,  -u B }  i^i  RR )  =  { -u A ,  -u B }
)
3023, 29syl5eq 2182 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  ( z  = 
-u A  \/  z  =  -u B ) }  =  { -u A ,  -u B } )
3119, 30eqtrd 2170 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  -u z  e.  { A ,  B } }  =  { -u A ,  -u B } )
3231supeq1d 6867 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  =  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
33 maxcl 10975 . . . . . . 7  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
3424, 25, 33syl2an 287 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
3532, 34eqeltrd 2214 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR )
3635renegcld 8135 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR )
37 simpr 109 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  y  =  A )
3837negeqd 7950 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u y  =  -u A )
39 maxle1 10976 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  -u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
4024, 25, 39syl2an 287 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
4140ad2antrr 479 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
4238, 41eqbrtrd 3945 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
43 simpll 518 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( A  e.  RR  /\  B  e.  RR ) )
44 simplll 522 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  A  e.  RR )
4537, 44eqeltrd 2214 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  y  e.  RR )
4632negeqd 7950 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  = 
-u sup ( { -u A ,  -u B } ,  RR ,  <  )
)
4746breq2d 3936 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  y  <  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
4847notbid 656 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -.  y  <  -u sup ( {
-u A ,  -u B } ,  RR ,  <  ) ) )
4948adantr 274 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -.  y  <  -u sup ( {
-u A ,  -u B } ,  RR ,  <  ) ) )
5034adantr 274 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
5150renegcld 8135 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  -u sup ( {
-u A ,  -u B } ,  RR ,  <  )  e.  RR )
52 simpr 109 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  y  e.  RR )
5351, 52lenltd 7873 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -.  y  <  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
54 lenegcon1 8221 . . . . . . . . . 10  |-  ( ( sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR  /\  y  e.  RR )  ->  ( -u
sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5534, 54sylan 281 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5649, 53, 553bitr2d 215 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5743, 45, 56syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5842, 57mpbird 166 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
59 simpr 109 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  y  =  B )
6059negeqd 7950 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u y  =  -u B )
61 maxle2 10977 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  -u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
6224, 25, 61syl2an 287 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
6362ad2antrr 479 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
6460, 63eqbrtrd 3945 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
65 simpll 518 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( A  e.  RR  /\  B  e.  RR ) )
66 simpllr 523 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  B  e.  RR )
6759, 66eqeltrd 2214 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  y  e.  RR )
6865, 67, 56syl2anc 408 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
6964, 68mpbird 166 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
70 elpri 3545 . . . . . . 7  |-  ( y  e.  { A ,  B }  ->  ( y  =  A  \/  y  =  B ) )
7170adantl 275 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B }
)  ->  ( y  =  A  \/  y  =  B ) )
7258, 69, 71mpjaodan 787 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B }
)  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
7372ralrimiva 2503 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
7424ad3antrrr 483 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u A  e.  RR )
7525ad3antlr 484 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u B  e.  RR )
76 simplr 519 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  y  e.  RR )
7776renegcld 8135 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u y  e.  RR )
7834ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
79 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y )
8046breq1d 3934 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  <->  -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <  y ) )
8180ad2antrr 479 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  <->  -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <  y ) )
8279, 81mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u sup ( {
-u A ,  -u B } ,  RR ,  <  )  <  y )
8378, 76, 82ltnegcon1d 8280 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u y  <  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
84 maxleastlt 10980 . . . . . . . . 9  |-  ( ( ( -u A  e.  RR  /\  -u B  e.  RR )  /\  ( -u y  e.  RR  /\  -u y  <  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )  -> 
( -u y  <  -u A  \/  -u y  <  -u B
) )
8574, 75, 77, 83, 84syl22anc 1217 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( -u y  <  -u A  \/  -u y  <  -u B ) )
86 simplll 522 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  A  e.  RR )
8786, 76ltnegd 8278 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( A  < 
y  <->  -u y  <  -u A
) )
88 simpllr 523 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  B  e.  RR )
8988, 76ltnegd 8278 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( B  < 
y  <->  -u y  <  -u B
) )
9087, 89orbi12d 782 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( ( A  <  y  \/  B  <  y )  <->  ( -u y  <  -u A  \/  -u y  <  -u B ) ) )
9185, 90mpbird 166 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( A  < 
y  \/  B  < 
y ) )
92 breq1 3927 . . . . . . . . 9  |-  ( z  =  A  ->  (
z  <  y  <->  A  <  y ) )
93 breq1 3927 . . . . . . . . 9  |-  ( z  =  B  ->  (
z  <  y  <->  B  <  y ) )
9492, 93rexprg 3570 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( E. z  e. 
{ A ,  B } z  <  y  <->  ( A  <  y  \/  B  <  y ) ) )
9594ad2antrr 479 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( E. z  e.  { A ,  B } z  <  y  <->  ( A  <  y  \/  B  <  y ) ) )
9691, 95mpbird 166 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  E. z  e.  { A ,  B }
z  <  y )
9796ex 114 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) )
9897ralrimiva 2503 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. y  e.  RR  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) )
99 breq2 3928 . . . . . . . 8  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( y  <  x  <->  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
10099notbid 656 . . . . . . 7  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( -.  y  < 
x  <->  -.  y  <  -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
101100ralbidv 2435 . . . . . 6  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( A. y  e. 
{ A ,  B }  -.  y  <  x  <->  A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
102 breq1 3927 . . . . . . . 8  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( x  <  y  <->  -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y ) )
103102imbi1d 230 . . . . . . 7  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( ( x  < 
y  ->  E. z  e.  { A ,  B } z  <  y
)  <->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
104103ralbidv 2435 . . . . . 6  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( A. y  e.  RR  ( x  < 
y  ->  E. z  e.  { A ,  B } z  <  y
)  <->  A. y  e.  RR  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) )
105101, 104anbi12d 464 . . . . 5  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) )  <->  ( A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  /\  A. y  e.  RR  ( -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) ) )
106105rspcev 2784 . . . 4  |-  ( (
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  /\  A. y  e.  RR  ( -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
10736, 73, 98, 106syl12anc 1214 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
108 prssi 3673 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { A ,  B }  C_  RR )
109107, 108infrenegsupex 9382 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
110109, 46eqtrd 2170 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   {cab 2123   A.wral 2414   E.wrex 2415   {crab 2418    i^i cin 3065    C_ wss 3066   {cpr 3523   class class class wbr 3924   supcsup 6862  infcinf 6863   RRcr 7612    < clt 7793    <_ cle 7794   -ucneg 7927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-sup 6864  df-inf 6865  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764
This theorem is referenced by:  mincl  10995  min1inf  10996  min2inf  10997  lemininf  10998  ltmininf  10999  minabs  11000  minclpr  11001  xrminrecl  11035
  Copyright terms: Public domain W3C validator