ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minmax Unicode version

Theorem minmax 11412
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
Assertion
Ref Expression
minmax  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )

Proof of Theorem minmax
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegcl 8304 . . . . . . . . . . . 12  |-  ( z  e.  RR  ->  -u z  e.  RR )
2 elprg 3643 . . . . . . . . . . . 12  |-  ( -u z  e.  RR  ->  (
-u z  e.  { A ,  B }  <->  (
-u z  =  A  \/  -u z  =  B ) ) )
31, 2syl 14 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  ( -u z  e.  { A ,  B }  <->  ( -u z  =  A  \/  -u z  =  B ) ) )
43adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  e.  { A ,  B } 
<->  ( -u z  =  A  \/  -u z  =  B ) ) )
5 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  z  e.  RR )
65recnd 8072 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  z  e.  CC )
7 simpll 527 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  A  e.  RR )
87recnd 8072 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  A  e.  CC )
96, 8negcon1d 8348 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  A  <->  -u A  =  z ) )
10 eqcom 2198 . . . . . . . . . . . 12  |-  ( -u A  =  z  <->  z  =  -u A )
119, 10bitrdi 196 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  A  <->  z  =  -u A ) )
12 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  B  e.  RR )
1312recnd 8072 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  B  e.  CC )
146, 13negcon1d 8348 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  B  <->  -u B  =  z ) )
15 eqcom 2198 . . . . . . . . . . . 12  |-  ( -u B  =  z  <->  z  =  -u B )
1614, 15bitrdi 196 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  B  <->  z  =  -u B ) )
1711, 16orbi12d 794 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( ( -u z  =  A  \/  -u z  =  B )  <-> 
( z  =  -u A  \/  z  =  -u B ) ) )
184, 17bitrd 188 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  e.  { A ,  B } 
<->  ( z  =  -u A  \/  z  =  -u B ) ) )
1918rabbidva 2751 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  -u z  e.  { A ,  B } }  =  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B ) } )
20 dfrab2 3439 . . . . . . . . . 10  |-  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B
) }  =  ( { z  |  ( z  =  -u A  \/  z  =  -u B
) }  i^i  RR )
21 dfpr2 3642 . . . . . . . . . . 11  |-  { -u A ,  -u B }  =  { z  |  ( z  =  -u A  \/  z  =  -u B
) }
2221ineq1i 3361 . . . . . . . . . 10  |-  ( {
-u A ,  -u B }  i^i  RR )  =  ( { z  |  ( z  = 
-u A  \/  z  =  -u B ) }  i^i  RR )
2320, 22eqtr4i 2220 . . . . . . . . 9  |-  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B
) }  =  ( { -u A ,  -u B }  i^i  RR )
24 renegcl 8304 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  -u A  e.  RR )
25 renegcl 8304 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  -u B  e.  RR )
26 prssi 3781 . . . . . . . . . . 11  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  { -u A ,  -u B }  C_  RR )
2724, 25, 26syl2an 289 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { -u A ,  -u B }  C_  RR )
28 df-ss 3170 . . . . . . . . . 10  |-  ( {
-u A ,  -u B }  C_  RR  <->  ( { -u A ,  -u B }  i^i  RR )  =  { -u A ,  -u B } )
2927, 28sylib 122 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( { -u A ,  -u B }  i^i  RR )  =  { -u A ,  -u B }
)
3023, 29eqtrid 2241 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  ( z  = 
-u A  \/  z  =  -u B ) }  =  { -u A ,  -u B } )
3119, 30eqtrd 2229 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  -u z  e.  { A ,  B } }  =  { -u A ,  -u B } )
3231supeq1d 7062 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  =  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
33 maxcl 11392 . . . . . . 7  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
3424, 25, 33syl2an 289 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
3532, 34eqeltrd 2273 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR )
3635renegcld 8423 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR )
37 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  y  =  A )
3837negeqd 8238 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u y  =  -u A )
39 maxle1 11393 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  -u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
4024, 25, 39syl2an 289 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
4140ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
4238, 41eqbrtrd 4056 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
43 simpll 527 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( A  e.  RR  /\  B  e.  RR ) )
44 simplll 533 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  A  e.  RR )
4537, 44eqeltrd 2273 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  y  e.  RR )
4632negeqd 8238 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  = 
-u sup ( { -u A ,  -u B } ,  RR ,  <  )
)
4746breq2d 4046 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  y  <  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
4847notbid 668 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -.  y  <  -u sup ( {
-u A ,  -u B } ,  RR ,  <  ) ) )
4948adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -.  y  <  -u sup ( {
-u A ,  -u B } ,  RR ,  <  ) ) )
5034adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
5150renegcld 8423 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  -u sup ( {
-u A ,  -u B } ,  RR ,  <  )  e.  RR )
52 simpr 110 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  y  e.  RR )
5351, 52lenltd 8161 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -.  y  <  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
54 lenegcon1 8510 . . . . . . . . . 10  |-  ( ( sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR  /\  y  e.  RR )  ->  ( -u
sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5534, 54sylan 283 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5649, 53, 553bitr2d 216 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5743, 45, 56syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5842, 57mpbird 167 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
59 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  y  =  B )
6059negeqd 8238 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u y  =  -u B )
61 maxle2 11394 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  -u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
6224, 25, 61syl2an 289 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
6362ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
6460, 63eqbrtrd 4056 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
65 simpll 527 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( A  e.  RR  /\  B  e.  RR ) )
66 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  B  e.  RR )
6759, 66eqeltrd 2273 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  y  e.  RR )
6865, 67, 56syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
6964, 68mpbird 167 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
70 elpri 3646 . . . . . . 7  |-  ( y  e.  { A ,  B }  ->  ( y  =  A  \/  y  =  B ) )
7170adantl 277 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B }
)  ->  ( y  =  A  \/  y  =  B ) )
7258, 69, 71mpjaodan 799 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B }
)  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
7372ralrimiva 2570 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
7424ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u A  e.  RR )
7525ad3antlr 493 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u B  e.  RR )
76 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  y  e.  RR )
7776renegcld 8423 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u y  e.  RR )
7834ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
79 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y )
8046breq1d 4044 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  <->  -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <  y ) )
8180ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  <->  -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <  y ) )
8279, 81mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u sup ( {
-u A ,  -u B } ,  RR ,  <  )  <  y )
8378, 76, 82ltnegcon1d 8569 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u y  <  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
84 maxleastlt 11397 . . . . . . . . 9  |-  ( ( ( -u A  e.  RR  /\  -u B  e.  RR )  /\  ( -u y  e.  RR  /\  -u y  <  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )  -> 
( -u y  <  -u A  \/  -u y  <  -u B
) )
8574, 75, 77, 83, 84syl22anc 1250 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( -u y  <  -u A  \/  -u y  <  -u B ) )
86 simplll 533 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  A  e.  RR )
8786, 76ltnegd 8567 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( A  < 
y  <->  -u y  <  -u A
) )
88 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  B  e.  RR )
8988, 76ltnegd 8567 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( B  < 
y  <->  -u y  <  -u B
) )
9087, 89orbi12d 794 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( ( A  <  y  \/  B  <  y )  <->  ( -u y  <  -u A  \/  -u y  <  -u B ) ) )
9185, 90mpbird 167 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( A  < 
y  \/  B  < 
y ) )
92 breq1 4037 . . . . . . . . 9  |-  ( z  =  A  ->  (
z  <  y  <->  A  <  y ) )
93 breq1 4037 . . . . . . . . 9  |-  ( z  =  B  ->  (
z  <  y  <->  B  <  y ) )
9492, 93rexprg 3675 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( E. z  e. 
{ A ,  B } z  <  y  <->  ( A  <  y  \/  B  <  y ) ) )
9594ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( E. z  e.  { A ,  B } z  <  y  <->  ( A  <  y  \/  B  <  y ) ) )
9691, 95mpbird 167 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  E. z  e.  { A ,  B }
z  <  y )
9796ex 115 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) )
9897ralrimiva 2570 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. y  e.  RR  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) )
99 breq2 4038 . . . . . . . 8  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( y  <  x  <->  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
10099notbid 668 . . . . . . 7  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( -.  y  < 
x  <->  -.  y  <  -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
101100ralbidv 2497 . . . . . 6  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( A. y  e. 
{ A ,  B }  -.  y  <  x  <->  A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
102 breq1 4037 . . . . . . . 8  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( x  <  y  <->  -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y ) )
103102imbi1d 231 . . . . . . 7  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( ( x  < 
y  ->  E. z  e.  { A ,  B } z  <  y
)  <->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
104103ralbidv 2497 . . . . . 6  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( A. y  e.  RR  ( x  < 
y  ->  E. z  e.  { A ,  B } z  <  y
)  <->  A. y  e.  RR  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) )
105101, 104anbi12d 473 . . . . 5  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) )  <->  ( A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  /\  A. y  e.  RR  ( -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) ) )
106105rspcev 2868 . . . 4  |-  ( (
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  /\  A. y  e.  RR  ( -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
10736, 73, 98, 106syl12anc 1247 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
108 prssi 3781 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { A ,  B }  C_  RR )
109107, 108infrenegsupex 9685 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
110109, 46eqtrd 2229 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   {crab 2479    i^i cin 3156    C_ wss 3157   {cpr 3624   class class class wbr 4034   supcsup 7057  infcinf 7058   RRcr 7895    < clt 8078    <_ cle 8079   -ucneg 8215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by:  mincl  11413  min1inf  11414  min2inf  11415  lemininf  11416  ltmininf  11417  minabs  11418  minclpr  11419  mingeb  11424  xrminrecl  11455
  Copyright terms: Public domain W3C validator