ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minmax Unicode version

Theorem minmax 10625
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
Assertion
Ref Expression
minmax  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )

Proof of Theorem minmax
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegcl 7722 . . . . . . . . . . . 12  |-  ( z  e.  RR  ->  -u z  e.  RR )
2 elprg 3461 . . . . . . . . . . . 12  |-  ( -u z  e.  RR  ->  (
-u z  e.  { A ,  B }  <->  (
-u z  =  A  \/  -u z  =  B ) ) )
31, 2syl 14 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  ( -u z  e.  { A ,  B }  <->  ( -u z  =  A  \/  -u z  =  B ) ) )
43adantl 271 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  e.  { A ,  B } 
<->  ( -u z  =  A  \/  -u z  =  B ) ) )
5 simpr 108 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  z  e.  RR )
65recnd 7495 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  z  e.  CC )
7 simpll 496 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  A  e.  RR )
87recnd 7495 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  A  e.  CC )
96, 8negcon1d 7766 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  A  <->  -u A  =  z ) )
10 eqcom 2090 . . . . . . . . . . . 12  |-  ( -u A  =  z  <->  z  =  -u A )
119, 10syl6bb 194 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  A  <->  z  =  -u A ) )
12 simplr 497 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  B  e.  RR )
1312recnd 7495 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  B  e.  CC )
146, 13negcon1d 7766 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  B  <->  -u B  =  z ) )
15 eqcom 2090 . . . . . . . . . . . 12  |-  ( -u B  =  z  <->  z  =  -u B )
1614, 15syl6bb 194 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  B  <->  z  =  -u B ) )
1711, 16orbi12d 742 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( ( -u z  =  A  \/  -u z  =  B )  <-> 
( z  =  -u A  \/  z  =  -u B ) ) )
184, 17bitrd 186 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  e.  { A ,  B } 
<->  ( z  =  -u A  \/  z  =  -u B ) ) )
1918rabbidva 2607 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  -u z  e.  { A ,  B } }  =  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B ) } )
20 dfrab2 3272 . . . . . . . . . 10  |-  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B
) }  =  ( { z  |  ( z  =  -u A  \/  z  =  -u B
) }  i^i  RR )
21 dfpr2 3460 . . . . . . . . . . 11  |-  { -u A ,  -u B }  =  { z  |  ( z  =  -u A  \/  z  =  -u B
) }
2221ineq1i 3195 . . . . . . . . . 10  |-  ( {
-u A ,  -u B }  i^i  RR )  =  ( { z  |  ( z  = 
-u A  \/  z  =  -u B ) }  i^i  RR )
2320, 22eqtr4i 2111 . . . . . . . . 9  |-  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B
) }  =  ( { -u A ,  -u B }  i^i  RR )
24 renegcl 7722 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  -u A  e.  RR )
25 renegcl 7722 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  -u B  e.  RR )
26 prssi 3590 . . . . . . . . . . 11  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  { -u A ,  -u B }  C_  RR )
2724, 25, 26syl2an 283 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { -u A ,  -u B }  C_  RR )
28 df-ss 3010 . . . . . . . . . 10  |-  ( {
-u A ,  -u B }  C_  RR  <->  ( { -u A ,  -u B }  i^i  RR )  =  { -u A ,  -u B } )
2927, 28sylib 120 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( { -u A ,  -u B }  i^i  RR )  =  { -u A ,  -u B }
)
3023, 29syl5eq 2132 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  ( z  = 
-u A  \/  z  =  -u B ) }  =  { -u A ,  -u B } )
3119, 30eqtrd 2120 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  -u z  e.  { A ,  B } }  =  { -u A ,  -u B } )
3231supeq1d 6661 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  =  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
33 maxcl 10608 . . . . . . 7  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
3424, 25, 33syl2an 283 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
3532, 34eqeltrd 2164 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR )
3635renegcld 7837 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR )
37 simpr 108 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  y  =  A )
3837negeqd 7656 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u y  =  -u A )
39 maxle1 10609 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  -u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
4024, 25, 39syl2an 283 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
4140ad2antrr 472 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
4238, 41eqbrtrd 3857 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
43 simpll 496 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( A  e.  RR  /\  B  e.  RR ) )
44 simplll 500 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  A  e.  RR )
4537, 44eqeltrd 2164 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  y  e.  RR )
4632negeqd 7656 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  = 
-u sup ( { -u A ,  -u B } ,  RR ,  <  )
)
4746breq2d 3849 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  y  <  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
4847notbid 627 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -.  y  <  -u sup ( {
-u A ,  -u B } ,  RR ,  <  ) ) )
4948adantr 270 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -.  y  <  -u sup ( {
-u A ,  -u B } ,  RR ,  <  ) ) )
5034adantr 270 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
5150renegcld 7837 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  -u sup ( {
-u A ,  -u B } ,  RR ,  <  )  e.  RR )
52 simpr 108 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  y  e.  RR )
5351, 52lenltd 7580 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -.  y  <  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
54 lenegcon1 7923 . . . . . . . . . 10  |-  ( ( sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR  /\  y  e.  RR )  ->  ( -u
sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5534, 54sylan 277 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5649, 53, 553bitr2d 214 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5743, 45, 56syl2anc 403 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5842, 57mpbird 165 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
59 simpr 108 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  y  =  B )
6059negeqd 7656 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u y  =  -u B )
61 maxle2 10610 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  -u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
6224, 25, 61syl2an 283 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
6362ad2antrr 472 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
6460, 63eqbrtrd 3857 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
65 simpll 496 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( A  e.  RR  /\  B  e.  RR ) )
66 simpllr 501 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  B  e.  RR )
6759, 66eqeltrd 2164 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  y  e.  RR )
6865, 67, 56syl2anc 403 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
6964, 68mpbird 165 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
70 elpri 3464 . . . . . . 7  |-  ( y  e.  { A ,  B }  ->  ( y  =  A  \/  y  =  B ) )
7170adantl 271 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B }
)  ->  ( y  =  A  \/  y  =  B ) )
7258, 69, 71mpjaodan 747 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B }
)  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
7372ralrimiva 2446 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
7424ad3antrrr 476 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u A  e.  RR )
7525ad3antlr 477 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u B  e.  RR )
76 simplr 497 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  y  e.  RR )
7776renegcld 7837 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u y  e.  RR )
7834ad2antrr 472 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
79 simpr 108 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y )
8046breq1d 3847 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  <->  -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <  y ) )
8180ad2antrr 472 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  <->  -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <  y ) )
8279, 81mpbid 145 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u sup ( {
-u A ,  -u B } ,  RR ,  <  )  <  y )
8378, 76, 82ltnegcon1d 7978 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u y  <  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
84 maxleastlt 10613 . . . . . . . . 9  |-  ( ( ( -u A  e.  RR  /\  -u B  e.  RR )  /\  ( -u y  e.  RR  /\  -u y  <  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )  -> 
( -u y  <  -u A  \/  -u y  <  -u B
) )
8574, 75, 77, 83, 84syl22anc 1175 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( -u y  <  -u A  \/  -u y  <  -u B ) )
86 simplll 500 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  A  e.  RR )
8786, 76ltnegd 7976 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( A  < 
y  <->  -u y  <  -u A
) )
88 simpllr 501 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  B  e.  RR )
8988, 76ltnegd 7976 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( B  < 
y  <->  -u y  <  -u B
) )
9087, 89orbi12d 742 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( ( A  <  y  \/  B  <  y )  <->  ( -u y  <  -u A  \/  -u y  <  -u B ) ) )
9185, 90mpbird 165 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( A  < 
y  \/  B  < 
y ) )
92 breq1 3840 . . . . . . . . 9  |-  ( z  =  A  ->  (
z  <  y  <->  A  <  y ) )
93 breq1 3840 . . . . . . . . 9  |-  ( z  =  B  ->  (
z  <  y  <->  B  <  y ) )
9492, 93rexprg 3489 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( E. z  e. 
{ A ,  B } z  <  y  <->  ( A  <  y  \/  B  <  y ) ) )
9594ad2antrr 472 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( E. z  e.  { A ,  B } z  <  y  <->  ( A  <  y  \/  B  <  y ) ) )
9691, 95mpbird 165 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  E. z  e.  { A ,  B }
z  <  y )
9796ex 113 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) )
9897ralrimiva 2446 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. y  e.  RR  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) )
99 breq2 3841 . . . . . . . 8  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( y  <  x  <->  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
10099notbid 627 . . . . . . 7  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( -.  y  < 
x  <->  -.  y  <  -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
101100ralbidv 2380 . . . . . 6  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( A. y  e. 
{ A ,  B }  -.  y  <  x  <->  A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
102 breq1 3840 . . . . . . . 8  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( x  <  y  <->  -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y ) )
103102imbi1d 229 . . . . . . 7  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( ( x  < 
y  ->  E. z  e.  { A ,  B } z  <  y
)  <->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
104103ralbidv 2380 . . . . . 6  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( A. y  e.  RR  ( x  < 
y  ->  E. z  e.  { A ,  B } z  <  y
)  <->  A. y  e.  RR  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) )
105101, 104anbi12d 457 . . . . 5  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) )  <->  ( A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  /\  A. y  e.  RR  ( -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) ) )
106105rspcev 2722 . . . 4  |-  ( (
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  /\  A. y  e.  RR  ( -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
10736, 73, 98, 106syl12anc 1172 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
108 prssi 3590 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { A ,  B }  C_  RR )
109107, 108infrenegsupex 9051 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
110109, 46eqtrd 2120 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    = wceq 1289    e. wcel 1438   {cab 2074   A.wral 2359   E.wrex 2360   {crab 2363    i^i cin 2996    C_ wss 2997   {cpr 3442   class class class wbr 3837   supcsup 6656  infcinf 6657   RRcr 7328    < clt 7501    <_ cle 7502   -ucneg 7633
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443  ax-caucvg 7444
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-isom 5011  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-sup 6658  df-inf 6659  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989  df-rp 9104  df-iseq 9818  df-seq3 9819  df-exp 9920  df-cj 10241  df-re 10242  df-im 10243  df-rsqrt 10396  df-abs 10397
This theorem is referenced by:  min1inf  10626  min2inf  10627  lemininf  10628  ltmininf  10629
  Copyright terms: Public domain W3C validator