ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minmax Unicode version

Theorem minmax 11193
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
Assertion
Ref Expression
minmax  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )

Proof of Theorem minmax
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegcl 8180 . . . . . . . . . . . 12  |-  ( z  e.  RR  ->  -u z  e.  RR )
2 elprg 3603 . . . . . . . . . . . 12  |-  ( -u z  e.  RR  ->  (
-u z  e.  { A ,  B }  <->  (
-u z  =  A  \/  -u z  =  B ) ) )
31, 2syl 14 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  ( -u z  e.  { A ,  B }  <->  ( -u z  =  A  \/  -u z  =  B ) ) )
43adantl 275 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  e.  { A ,  B } 
<->  ( -u z  =  A  \/  -u z  =  B ) ) )
5 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  z  e.  RR )
65recnd 7948 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  z  e.  CC )
7 simpll 524 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  A  e.  RR )
87recnd 7948 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  A  e.  CC )
96, 8negcon1d 8224 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  A  <->  -u A  =  z ) )
10 eqcom 2172 . . . . . . . . . . . 12  |-  ( -u A  =  z  <->  z  =  -u A )
119, 10bitrdi 195 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  A  <->  z  =  -u A ) )
12 simplr 525 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  B  e.  RR )
1312recnd 7948 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  B  e.  CC )
146, 13negcon1d 8224 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  B  <->  -u B  =  z ) )
15 eqcom 2172 . . . . . . . . . . . 12  |-  ( -u B  =  z  <->  z  =  -u B )
1614, 15bitrdi 195 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  =  B  <->  z  =  -u B ) )
1711, 16orbi12d 788 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( ( -u z  =  A  \/  -u z  =  B )  <-> 
( z  =  -u A  \/  z  =  -u B ) ) )
184, 17bitrd 187 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  z  e.  RR )  ->  ( -u z  e.  { A ,  B } 
<->  ( z  =  -u A  \/  z  =  -u B ) ) )
1918rabbidva 2718 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  -u z  e.  { A ,  B } }  =  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B ) } )
20 dfrab2 3402 . . . . . . . . . 10  |-  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B
) }  =  ( { z  |  ( z  =  -u A  \/  z  =  -u B
) }  i^i  RR )
21 dfpr2 3602 . . . . . . . . . . 11  |-  { -u A ,  -u B }  =  { z  |  ( z  =  -u A  \/  z  =  -u B
) }
2221ineq1i 3324 . . . . . . . . . 10  |-  ( {
-u A ,  -u B }  i^i  RR )  =  ( { z  |  ( z  = 
-u A  \/  z  =  -u B ) }  i^i  RR )
2320, 22eqtr4i 2194 . . . . . . . . 9  |-  { z  e.  RR  |  ( z  =  -u A  \/  z  =  -u B
) }  =  ( { -u A ,  -u B }  i^i  RR )
24 renegcl 8180 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  -u A  e.  RR )
25 renegcl 8180 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  -u B  e.  RR )
26 prssi 3738 . . . . . . . . . . 11  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  { -u A ,  -u B }  C_  RR )
2724, 25, 26syl2an 287 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { -u A ,  -u B }  C_  RR )
28 df-ss 3134 . . . . . . . . . 10  |-  ( {
-u A ,  -u B }  C_  RR  <->  ( { -u A ,  -u B }  i^i  RR )  =  { -u A ,  -u B } )
2927, 28sylib 121 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( { -u A ,  -u B }  i^i  RR )  =  { -u A ,  -u B }
)
3023, 29eqtrid 2215 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  ( z  = 
-u A  \/  z  =  -u B ) }  =  { -u A ,  -u B } )
3119, 30eqtrd 2203 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { z  e.  RR  |  -u z  e.  { A ,  B } }  =  { -u A ,  -u B } )
3231supeq1d 6964 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  =  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
33 maxcl 11174 . . . . . . 7  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
3424, 25, 33syl2an 287 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
3532, 34eqeltrd 2247 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR )
3635renegcld 8299 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR )
37 simpr 109 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  y  =  A )
3837negeqd 8114 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u y  =  -u A )
39 maxle1 11175 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  -u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
4024, 25, 39syl2an 287 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
4140ad2antrr 485 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u A  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
4238, 41eqbrtrd 4011 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
43 simpll 524 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( A  e.  RR  /\  B  e.  RR ) )
44 simplll 528 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  A  e.  RR )
4537, 44eqeltrd 2247 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  y  e.  RR )
4632negeqd 8114 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  = 
-u sup ( { -u A ,  -u B } ,  RR ,  <  )
)
4746breq2d 4001 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  y  <  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
4847notbid 662 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -.  y  <  -u sup ( {
-u A ,  -u B } ,  RR ,  <  ) ) )
4948adantr 274 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -.  y  <  -u sup ( {
-u A ,  -u B } ,  RR ,  <  ) ) )
5034adantr 274 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
5150renegcld 8299 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  -u sup ( {
-u A ,  -u B } ,  RR ,  <  )  e.  RR )
52 simpr 109 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  y  e.  RR )
5351, 52lenltd 8037 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -.  y  <  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
54 lenegcon1 8385 . . . . . . . . . 10  |-  ( ( sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR  /\  y  e.  RR )  ->  ( -u
sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5534, 54sylan 281 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <_  y  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5649, 53, 553bitr2d 215 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5743, 45, 56syl2anc 409 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
5842, 57mpbird 166 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  A )  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
59 simpr 109 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  y  =  B )
6059negeqd 8114 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u y  =  -u B )
61 maxle2 11176 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  -u B  e.  RR )  ->  -u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
6224, 25, 61syl2an 287 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
6362ad2antrr 485 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u B  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
6460, 63eqbrtrd 4011 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  )
)
65 simpll 524 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( A  e.  RR  /\  B  e.  RR ) )
66 simpllr 529 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  B  e.  RR )
6759, 66eqeltrd 2247 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  y  e.  RR )
6865, 67, 56syl2anc 409 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  ( -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <->  -u y  <_  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )
6964, 68mpbird 166 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B } )  /\  y  =  B )  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
70 elpri 3606 . . . . . . 7  |-  ( y  e.  { A ,  B }  ->  ( y  =  A  \/  y  =  B ) )
7170adantl 275 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B }
)  ->  ( y  =  A  \/  y  =  B ) )
7258, 69, 71mpjaodan 793 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  { A ,  B }
)  ->  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
7372ralrimiva 2543 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
7424ad3antrrr 489 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u A  e.  RR )
7525ad3antlr 490 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u B  e.  RR )
76 simplr 525 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  y  e.  RR )
7776renegcld 8299 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u y  e.  RR )
7834ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  sup ( { -u A ,  -u B } ,  RR ,  <  )  e.  RR )
79 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y )
8046breq1d 3999 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  <->  -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <  y ) )
8180ad2antrr 485 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  <->  -u sup ( { -u A ,  -u B } ,  RR ,  <  )  <  y ) )
8279, 81mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u sup ( {
-u A ,  -u B } ,  RR ,  <  )  <  y )
8378, 76, 82ltnegcon1d 8444 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  -u y  <  sup ( { -u A ,  -u B } ,  RR ,  <  ) )
84 maxleastlt 11179 . . . . . . . . 9  |-  ( ( ( -u A  e.  RR  /\  -u B  e.  RR )  /\  ( -u y  e.  RR  /\  -u y  <  sup ( { -u A ,  -u B } ,  RR ,  <  ) ) )  -> 
( -u y  <  -u A  \/  -u y  <  -u B
) )
8574, 75, 77, 83, 84syl22anc 1234 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( -u y  <  -u A  \/  -u y  <  -u B ) )
86 simplll 528 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  A  e.  RR )
8786, 76ltnegd 8442 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( A  < 
y  <->  -u y  <  -u A
) )
88 simpllr 529 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  B  e.  RR )
8988, 76ltnegd 8442 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( B  < 
y  <->  -u y  <  -u B
) )
9087, 89orbi12d 788 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( ( A  <  y  \/  B  <  y )  <->  ( -u y  <  -u A  \/  -u y  <  -u B ) ) )
9185, 90mpbird 166 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( A  < 
y  \/  B  < 
y ) )
92 breq1 3992 . . . . . . . . 9  |-  ( z  =  A  ->  (
z  <  y  <->  A  <  y ) )
93 breq1 3992 . . . . . . . . 9  |-  ( z  =  B  ->  (
z  <  y  <->  B  <  y ) )
9492, 93rexprg 3635 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( E. z  e. 
{ A ,  B } z  <  y  <->  ( A  <  y  \/  B  <  y ) ) )
9594ad2antrr 485 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  ( E. z  e.  { A ,  B } z  <  y  <->  ( A  <  y  \/  B  <  y ) ) )
9691, 95mpbird 166 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  /\  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y )  ->  E. z  e.  { A ,  B }
z  <  y )
9796ex 114 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  RR )  ->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) )
9897ralrimiva 2543 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. y  e.  RR  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) )
99 breq2 3993 . . . . . . . 8  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( y  <  x  <->  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
10099notbid 662 . . . . . . 7  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( -.  y  < 
x  <->  -.  y  <  -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
101100ralbidv 2470 . . . . . 6  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( A. y  e. 
{ A ,  B }  -.  y  <  x  <->  A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) ) )
102 breq1 3992 . . . . . . . 8  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( x  <  y  <->  -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y ) )
103102imbi1d 230 . . . . . . 7  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( ( x  < 
y  ->  E. z  e.  { A ,  B } z  <  y
)  <->  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
104103ralbidv 2470 . . . . . 6  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( A. y  e.  RR  ( x  < 
y  ->  E. z  e.  { A ,  B } z  <  y
)  <->  A. y  e.  RR  ( -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) )
105101, 104anbi12d 470 . . . . 5  |-  ( x  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  -> 
( ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) )  <->  ( A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  /\  A. y  e.  RR  ( -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) ) )
106105rspcev 2834 . . . 4  |-  ( (
-u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  y  <  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  /\  A. y  e.  RR  ( -u
sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  )  < 
y  ->  E. z  e.  { A ,  B } z  <  y
) ) )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
10736, 73, 98, 106syl12anc 1231 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { A ,  B } z  < 
y ) ) )
108 prssi 3738 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { A ,  B }  C_  RR )
109107, 108infrenegsupex 9553 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  { A ,  B } } ,  RR ,  <  ) )
110109, 46eqtrd 2203 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   {crab 2452    i^i cin 3120    C_ wss 3121   {cpr 3584   class class class wbr 3989   supcsup 6959  infcinf 6960   RRcr 7773    < clt 7954    <_ cle 7955   -ucneg 8091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  mincl  11194  min1inf  11195  min2inf  11196  lemininf  11197  ltmininf  11198  minabs  11199  minclpr  11200  mingeb  11205  xrminrecl  11236
  Copyright terms: Public domain W3C validator