| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfpr2 | GIF version | ||
| Description: Alternate definition of unordered pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dfpr2 | ⊢ {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3673 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 2 | elun 3345 | . . . 4 ⊢ (𝑥 ∈ ({𝐴} ∪ {𝐵}) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ {𝐵})) | |
| 3 | velsn 3683 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 4 | velsn 3683 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
| 5 | 3, 4 | orbi12i 769 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∨ 𝑥 ∈ {𝐵}) ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
| 6 | 2, 5 | bitri 184 | . . 3 ⊢ (𝑥 ∈ ({𝐴} ∪ {𝐵}) ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
| 7 | 6 | abbi2i 2344 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)} |
| 8 | 1, 7 | eqtri 2250 | 1 ⊢ {𝐴, 𝐵} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)} |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 713 = wceq 1395 ∈ wcel 2200 {cab 2215 ∪ cun 3195 {csn 3666 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: elprg 3686 nfpr 3716 pwsnss 3881 minmax 11727 xrminmax 11762 |
| Copyright terms: Public domain | W3C validator |