| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrab2 | GIF version | ||
| Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) |
| Ref | Expression |
|---|---|
| dfrab2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2494 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | inab 3445 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∩ {𝑥 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | abid2 2327 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 4 | 3 | ineq1i 3374 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∩ {𝑥 ∣ 𝜑}) = (𝐴 ∩ {𝑥 ∣ 𝜑}) |
| 5 | 2, 4 | eqtr3i 2229 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = (𝐴 ∩ {𝑥 ∣ 𝜑}) |
| 6 | incom 3369 | . 2 ⊢ (𝐴 ∩ {𝑥 ∣ 𝜑}) = ({𝑥 ∣ 𝜑} ∩ 𝐴) | |
| 7 | 1, 5, 6 | 3eqtri 2231 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 {crab 2489 ∩ cin 3169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-in 3176 |
| This theorem is referenced by: minmax 11611 xrminmax 11646 |
| Copyright terms: Public domain | W3C validator |