ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrab2 GIF version

Theorem dfrab2 3479
Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
dfrab2 {𝑥𝐴𝜑} = ({𝑥𝜑} ∩ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfrab2
StepHypRef Expression
1 df-rab 2517 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 inab 3472 . . 3 ({𝑥𝑥𝐴} ∩ {𝑥𝜑}) = {𝑥 ∣ (𝑥𝐴𝜑)}
3 abid2 2350 . . . 4 {𝑥𝑥𝐴} = 𝐴
43ineq1i 3401 . . 3 ({𝑥𝑥𝐴} ∩ {𝑥𝜑}) = (𝐴 ∩ {𝑥𝜑})
52, 4eqtr3i 2252 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = (𝐴 ∩ {𝑥𝜑})
6 incom 3396 . 2 (𝐴 ∩ {𝑥𝜑}) = ({𝑥𝜑} ∩ 𝐴)
71, 5, 63eqtri 2254 1 {𝑥𝐴𝜑} = ({𝑥𝜑} ∩ 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  {cab 2215  {crab 2512  cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-in 3203
This theorem is referenced by:  minmax  11727  xrminmax  11762
  Copyright terms: Public domain W3C validator