| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfrab2 | GIF version | ||
| Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) | 
| Ref | Expression | 
|---|---|
| dfrab2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rab 2484 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | inab 3431 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∩ {𝑥 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | abid2 2317 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 4 | 3 | ineq1i 3360 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∩ {𝑥 ∣ 𝜑}) = (𝐴 ∩ {𝑥 ∣ 𝜑}) | 
| 5 | 2, 4 | eqtr3i 2219 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | 
| 6 | incom 3355 | . 2 ⊢ (𝐴 ∩ {𝑥 ∣ 𝜑}) = ({𝑥 ∣ 𝜑} ∩ 𝐴) | |
| 7 | 1, 5, 6 | 3eqtri 2221 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cab 2182 {crab 2479 ∩ cin 3156 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-in 3163 | 
| This theorem is referenced by: minmax 11395 xrminmax 11430 | 
| Copyright terms: Public domain | W3C validator |