ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrab2 GIF version

Theorem dfrab2 3452
Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
dfrab2 {𝑥𝐴𝜑} = ({𝑥𝜑} ∩ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfrab2
StepHypRef Expression
1 df-rab 2494 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 inab 3445 . . 3 ({𝑥𝑥𝐴} ∩ {𝑥𝜑}) = {𝑥 ∣ (𝑥𝐴𝜑)}
3 abid2 2327 . . . 4 {𝑥𝑥𝐴} = 𝐴
43ineq1i 3374 . . 3 ({𝑥𝑥𝐴} ∩ {𝑥𝜑}) = (𝐴 ∩ {𝑥𝜑})
52, 4eqtr3i 2229 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = (𝐴 ∩ {𝑥𝜑})
6 incom 3369 . 2 (𝐴 ∩ {𝑥𝜑}) = ({𝑥𝜑} ∩ 𝐴)
71, 5, 63eqtri 2231 1 {𝑥𝐴𝜑} = ({𝑥𝜑} ∩ 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wcel 2177  {cab 2192  {crab 2489  cin 3169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-in 3176
This theorem is referenced by:  minmax  11611  xrminmax  11646
  Copyright terms: Public domain W3C validator