| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjnims | GIF version | ||
| Description: If a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Jim Kingdon, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| disjnims | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 ≠ 𝑗 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . . 3 ⊢ Ⅎ𝑖𝐵 | |
| 2 | nfcsb1v 3117 | . . 3 ⊢ Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 | |
| 3 | csbeq1a 3093 | . . 3 ⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑥⦌𝐵) | |
| 4 | 1, 2, 3 | cbvdisj 4020 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑥⦌𝐵) |
| 5 | csbeq1 3087 | . . 3 ⊢ (𝑖 = 𝑗 → ⦋𝑖 / 𝑥⦌𝐵 = ⦋𝑗 / 𝑥⦌𝐵) | |
| 6 | 5 | disjnim 4024 | . 2 ⊢ (Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑥⦌𝐵 → ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 ≠ 𝑗 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 7 | 4, 6 | sylbi 121 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 ≠ 𝑗 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ≠ wne 2367 ∀wral 2475 ⦋csb 3084 ∩ cin 3156 ∅c0 3450 Disj wdisj 4010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-in 3163 df-nul 3451 df-disj 4011 |
| This theorem is referenced by: disji2 4026 |
| Copyright terms: Public domain | W3C validator |