ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjnims GIF version

Theorem disjnims 4050
Description: If a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Jim Kingdon, 7-Oct-2022.)
Assertion
Ref Expression
disjnims (Disj 𝑥𝐴 𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
Distinct variable groups:   𝑖,𝑗,𝑥,𝐴   𝐵,𝑖,𝑗
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjnims
StepHypRef Expression
1 nfcv 2350 . . 3 𝑖𝐵
2 nfcsb1v 3134 . . 3 𝑥𝑖 / 𝑥𝐵
3 csbeq1a 3110 . . 3 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑥𝐵)
41, 2, 3cbvdisj 4045 . 2 (Disj 𝑥𝐴 𝐵Disj 𝑖𝐴 𝑖 / 𝑥𝐵)
5 csbeq1 3104 . . 3 (𝑖 = 𝑗𝑖 / 𝑥𝐵 = 𝑗 / 𝑥𝐵)
65disjnim 4049 . 2 (Disj 𝑖𝐴 𝑖 / 𝑥𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
74, 6sylbi 121 1 (Disj 𝑥𝐴 𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wne 2378  wral 2486  csb 3101  cin 3173  c0 3468  Disj wdisj 4035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-in 3180  df-nul 3469  df-disj 4036
This theorem is referenced by:  disji2  4051
  Copyright terms: Public domain W3C validator