| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjnims | GIF version | ||
| Description: If a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Jim Kingdon, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| disjnims | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 ≠ 𝑗 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 | . . 3 ⊢ Ⅎ𝑖𝐵 | |
| 2 | nfcsb1v 3126 | . . 3 ⊢ Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 | |
| 3 | csbeq1a 3102 | . . 3 ⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑥⦌𝐵) | |
| 4 | 1, 2, 3 | cbvdisj 4031 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑥⦌𝐵) |
| 5 | csbeq1 3096 | . . 3 ⊢ (𝑖 = 𝑗 → ⦋𝑖 / 𝑥⦌𝐵 = ⦋𝑗 / 𝑥⦌𝐵) | |
| 6 | 5 | disjnim 4035 | . 2 ⊢ (Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑥⦌𝐵 → ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 ≠ 𝑗 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 7 | 4, 6 | sylbi 121 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 ≠ 𝑗 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ≠ wne 2376 ∀wral 2484 ⦋csb 3093 ∩ cin 3165 ∅c0 3460 Disj wdisj 4021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-in 3172 df-nul 3461 df-disj 4022 |
| This theorem is referenced by: disji2 4037 |
| Copyright terms: Public domain | W3C validator |