ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjnims GIF version

Theorem disjnims 4025
Description: If a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Jim Kingdon, 7-Oct-2022.)
Assertion
Ref Expression
disjnims (Disj 𝑥𝐴 𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
Distinct variable groups:   𝑖,𝑗,𝑥,𝐴   𝐵,𝑖,𝑗
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjnims
StepHypRef Expression
1 nfcv 2339 . . 3 𝑖𝐵
2 nfcsb1v 3117 . . 3 𝑥𝑖 / 𝑥𝐵
3 csbeq1a 3093 . . 3 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑥𝐵)
41, 2, 3cbvdisj 4020 . 2 (Disj 𝑥𝐴 𝐵Disj 𝑖𝐴 𝑖 / 𝑥𝐵)
5 csbeq1 3087 . . 3 (𝑖 = 𝑗𝑖 / 𝑥𝐵 = 𝑗 / 𝑥𝐵)
65disjnim 4024 . 2 (Disj 𝑖𝐴 𝑖 / 𝑥𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
74, 6sylbi 121 1 (Disj 𝑥𝐴 𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wne 2367  wral 2475  csb 3084  cin 3156  c0 3450  Disj wdisj 4010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-in 3163  df-nul 3451  df-disj 4011
This theorem is referenced by:  disji2  4026
  Copyright terms: Public domain W3C validator