| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjnims | GIF version | ||
| Description: If a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Jim Kingdon, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| disjnims | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 ≠ 𝑗 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . . 3 ⊢ Ⅎ𝑖𝐵 | |
| 2 | nfcsb1v 3157 | . . 3 ⊢ Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 | |
| 3 | csbeq1a 3133 | . . 3 ⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑥⦌𝐵) | |
| 4 | 1, 2, 3 | cbvdisj 4069 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑥⦌𝐵) |
| 5 | csbeq1 3127 | . . 3 ⊢ (𝑖 = 𝑗 → ⦋𝑖 / 𝑥⦌𝐵 = ⦋𝑗 / 𝑥⦌𝐵) | |
| 6 | 5 | disjnim 4073 | . 2 ⊢ (Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑥⦌𝐵 → ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 ≠ 𝑗 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 7 | 4, 6 | sylbi 121 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 ≠ 𝑗 → (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ≠ wne 2400 ∀wral 2508 ⦋csb 3124 ∩ cin 3196 ∅c0 3491 Disj wdisj 4059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-in 3203 df-nul 3492 df-disj 4060 |
| This theorem is referenced by: disji2 4075 |
| Copyright terms: Public domain | W3C validator |