| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjpr2 | Unicode version | ||
| Description: The intersection of distinct unordered pairs is disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.) |
| Ref | Expression |
|---|---|
| disjpr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3644 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | ineq2d 3378 |
. 2
|
| 4 | indi 3424 |
. . 3
| |
| 5 | df-pr 3644 |
. . . . . . . 8
| |
| 6 | 5 | ineq1i 3374 |
. . . . . . 7
|
| 7 | indir 3426 |
. . . . . . 7
| |
| 8 | 6, 7 | eqtri 2227 |
. . . . . 6
|
| 9 | disjsn2 3700 |
. . . . . . . . . 10
| |
| 10 | 9 | adantr 276 |
. . . . . . . . 9
|
| 11 | 10 | adantr 276 |
. . . . . . . 8
|
| 12 | disjsn2 3700 |
. . . . . . . . . 10
| |
| 13 | 12 | adantl 277 |
. . . . . . . . 9
|
| 14 | 13 | adantr 276 |
. . . . . . . 8
|
| 15 | 11, 14 | jca 306 |
. . . . . . 7
|
| 16 | un00 3511 |
. . . . . . 7
| |
| 17 | 15, 16 | sylib 122 |
. . . . . 6
|
| 18 | 8, 17 | eqtrid 2251 |
. . . . 5
|
| 19 | 5 | ineq1i 3374 |
. . . . . . 7
|
| 20 | indir 3426 |
. . . . . . 7
| |
| 21 | 19, 20 | eqtri 2227 |
. . . . . 6
|
| 22 | disjsn2 3700 |
. . . . . . . . . 10
| |
| 23 | 22 | adantr 276 |
. . . . . . . . 9
|
| 24 | 23 | adantl 277 |
. . . . . . . 8
|
| 25 | disjsn2 3700 |
. . . . . . . . . 10
| |
| 26 | 25 | adantl 277 |
. . . . . . . . 9
|
| 27 | 26 | adantl 277 |
. . . . . . . 8
|
| 28 | 24, 27 | jca 306 |
. . . . . . 7
|
| 29 | un00 3511 |
. . . . . . 7
| |
| 30 | 28, 29 | sylib 122 |
. . . . . 6
|
| 31 | 21, 30 | eqtrid 2251 |
. . . . 5
|
| 32 | 18, 31 | uneq12d 3332 |
. . . 4
|
| 33 | un0 3498 |
. . . 4
| |
| 34 | 32, 33 | eqtrdi 2255 |
. . 3
|
| 35 | 4, 34 | eqtrid 2251 |
. 2
|
| 36 | 3, 35 | eqtrd 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3643 df-pr 3644 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |