| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjpr2 | Unicode version | ||
| Description: The intersection of distinct unordered pairs is disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.) |
| Ref | Expression |
|---|---|
| disjpr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3629 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | ineq2d 3364 |
. 2
|
| 4 | indi 3410 |
. . 3
| |
| 5 | df-pr 3629 |
. . . . . . . 8
| |
| 6 | 5 | ineq1i 3360 |
. . . . . . 7
|
| 7 | indir 3412 |
. . . . . . 7
| |
| 8 | 6, 7 | eqtri 2217 |
. . . . . 6
|
| 9 | disjsn2 3685 |
. . . . . . . . . 10
| |
| 10 | 9 | adantr 276 |
. . . . . . . . 9
|
| 11 | 10 | adantr 276 |
. . . . . . . 8
|
| 12 | disjsn2 3685 |
. . . . . . . . . 10
| |
| 13 | 12 | adantl 277 |
. . . . . . . . 9
|
| 14 | 13 | adantr 276 |
. . . . . . . 8
|
| 15 | 11, 14 | jca 306 |
. . . . . . 7
|
| 16 | un00 3497 |
. . . . . . 7
| |
| 17 | 15, 16 | sylib 122 |
. . . . . 6
|
| 18 | 8, 17 | eqtrid 2241 |
. . . . 5
|
| 19 | 5 | ineq1i 3360 |
. . . . . . 7
|
| 20 | indir 3412 |
. . . . . . 7
| |
| 21 | 19, 20 | eqtri 2217 |
. . . . . 6
|
| 22 | disjsn2 3685 |
. . . . . . . . . 10
| |
| 23 | 22 | adantr 276 |
. . . . . . . . 9
|
| 24 | 23 | adantl 277 |
. . . . . . . 8
|
| 25 | disjsn2 3685 |
. . . . . . . . . 10
| |
| 26 | 25 | adantl 277 |
. . . . . . . . 9
|
| 27 | 26 | adantl 277 |
. . . . . . . 8
|
| 28 | 24, 27 | jca 306 |
. . . . . . 7
|
| 29 | un00 3497 |
. . . . . . 7
| |
| 30 | 28, 29 | sylib 122 |
. . . . . 6
|
| 31 | 21, 30 | eqtrid 2241 |
. . . . 5
|
| 32 | 18, 31 | uneq12d 3318 |
. . . 4
|
| 33 | un0 3484 |
. . . 4
| |
| 34 | 32, 33 | eqtrdi 2245 |
. . 3
|
| 35 | 4, 34 | eqtrid 2241 |
. 2
|
| 36 | 3, 35 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-pr 3629 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |