ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjpr2 GIF version

Theorem disjpr2 3656
Description: The intersection of distinct unordered pairs is disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.)
Assertion
Ref Expression
disjpr2 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)

Proof of Theorem disjpr2
StepHypRef Expression
1 df-pr 3599 . . . 4 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
21a1i 9 . . 3 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}))
32ineq2d 3336 . 2 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷})))
4 indi 3382 . . 3 ({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷})) = (({𝐴, 𝐵} ∩ {𝐶}) ∪ ({𝐴, 𝐵} ∩ {𝐷}))
5 df-pr 3599 . . . . . . . 8 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
65ineq1i 3332 . . . . . . 7 ({𝐴, 𝐵} ∩ {𝐶}) = (({𝐴} ∪ {𝐵}) ∩ {𝐶})
7 indir 3384 . . . . . . 7 (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶}))
86, 7eqtri 2198 . . . . . 6 ({𝐴, 𝐵} ∩ {𝐶}) = (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶}))
9 disjsn2 3655 . . . . . . . . . 10 (𝐴𝐶 → ({𝐴} ∩ {𝐶}) = ∅)
109adantr 276 . . . . . . . . 9 ((𝐴𝐶𝐵𝐶) → ({𝐴} ∩ {𝐶}) = ∅)
1110adantr 276 . . . . . . . 8 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴} ∩ {𝐶}) = ∅)
12 disjsn2 3655 . . . . . . . . . 10 (𝐵𝐶 → ({𝐵} ∩ {𝐶}) = ∅)
1312adantl 277 . . . . . . . . 9 ((𝐴𝐶𝐵𝐶) → ({𝐵} ∩ {𝐶}) = ∅)
1413adantr 276 . . . . . . . 8 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐵} ∩ {𝐶}) = ∅)
1511, 14jca 306 . . . . . . 7 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅))
16 un00 3469 . . . . . . 7 ((({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅) ↔ (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶})) = ∅)
1715, 16sylib 122 . . . . . 6 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶})) = ∅)
188, 17eqtrid 2222 . . . . 5 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
195ineq1i 3332 . . . . . . 7 ({𝐴, 𝐵} ∩ {𝐷}) = (({𝐴} ∪ {𝐵}) ∩ {𝐷})
20 indir 3384 . . . . . . 7 (({𝐴} ∪ {𝐵}) ∩ {𝐷}) = (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷}))
2119, 20eqtri 2198 . . . . . 6 ({𝐴, 𝐵} ∩ {𝐷}) = (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷}))
22 disjsn2 3655 . . . . . . . . . 10 (𝐴𝐷 → ({𝐴} ∩ {𝐷}) = ∅)
2322adantr 276 . . . . . . . . 9 ((𝐴𝐷𝐵𝐷) → ({𝐴} ∩ {𝐷}) = ∅)
2423adantl 277 . . . . . . . 8 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴} ∩ {𝐷}) = ∅)
25 disjsn2 3655 . . . . . . . . . 10 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
2625adantl 277 . . . . . . . . 9 ((𝐴𝐷𝐵𝐷) → ({𝐵} ∩ {𝐷}) = ∅)
2726adantl 277 . . . . . . . 8 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐵} ∩ {𝐷}) = ∅)
2824, 27jca 306 . . . . . . 7 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅))
29 un00 3469 . . . . . . 7 ((({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅) ↔ (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷})) = ∅)
3028, 29sylib 122 . . . . . 6 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷})) = ∅)
3121, 30eqtrid 2222 . . . . 5 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
3218, 31uneq12d 3290 . . . 4 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴, 𝐵} ∩ {𝐶}) ∪ ({𝐴, 𝐵} ∩ {𝐷})) = (∅ ∪ ∅))
33 un0 3456 . . . 4 (∅ ∪ ∅) = ∅
3432, 33eqtrdi 2226 . . 3 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴, 𝐵} ∩ {𝐶}) ∪ ({𝐴, 𝐵} ∩ {𝐷})) = ∅)
354, 34eqtrid 2222 . 2 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷})) = ∅)
363, 35eqtrd 2210 1 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wne 2347  cun 3127  cin 3128  c0 3422  {csn 3592  {cpr 3593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-sn 3598  df-pr 3599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator