ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjpr2 GIF version

Theorem disjpr2 3698
Description: The intersection of distinct unordered pairs is disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.)
Assertion
Ref Expression
disjpr2 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)

Proof of Theorem disjpr2
StepHypRef Expression
1 df-pr 3641 . . . 4 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
21a1i 9 . . 3 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}))
32ineq2d 3375 . 2 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷})))
4 indi 3421 . . 3 ({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷})) = (({𝐴, 𝐵} ∩ {𝐶}) ∪ ({𝐴, 𝐵} ∩ {𝐷}))
5 df-pr 3641 . . . . . . . 8 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
65ineq1i 3371 . . . . . . 7 ({𝐴, 𝐵} ∩ {𝐶}) = (({𝐴} ∪ {𝐵}) ∩ {𝐶})
7 indir 3423 . . . . . . 7 (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶}))
86, 7eqtri 2227 . . . . . 6 ({𝐴, 𝐵} ∩ {𝐶}) = (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶}))
9 disjsn2 3697 . . . . . . . . . 10 (𝐴𝐶 → ({𝐴} ∩ {𝐶}) = ∅)
109adantr 276 . . . . . . . . 9 ((𝐴𝐶𝐵𝐶) → ({𝐴} ∩ {𝐶}) = ∅)
1110adantr 276 . . . . . . . 8 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴} ∩ {𝐶}) = ∅)
12 disjsn2 3697 . . . . . . . . . 10 (𝐵𝐶 → ({𝐵} ∩ {𝐶}) = ∅)
1312adantl 277 . . . . . . . . 9 ((𝐴𝐶𝐵𝐶) → ({𝐵} ∩ {𝐶}) = ∅)
1413adantr 276 . . . . . . . 8 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐵} ∩ {𝐶}) = ∅)
1511, 14jca 306 . . . . . . 7 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅))
16 un00 3508 . . . . . . 7 ((({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅) ↔ (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶})) = ∅)
1715, 16sylib 122 . . . . . 6 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴} ∩ {𝐶}) ∪ ({𝐵} ∩ {𝐶})) = ∅)
188, 17eqtrid 2251 . . . . 5 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
195ineq1i 3371 . . . . . . 7 ({𝐴, 𝐵} ∩ {𝐷}) = (({𝐴} ∪ {𝐵}) ∩ {𝐷})
20 indir 3423 . . . . . . 7 (({𝐴} ∪ {𝐵}) ∩ {𝐷}) = (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷}))
2119, 20eqtri 2227 . . . . . 6 ({𝐴, 𝐵} ∩ {𝐷}) = (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷}))
22 disjsn2 3697 . . . . . . . . . 10 (𝐴𝐷 → ({𝐴} ∩ {𝐷}) = ∅)
2322adantr 276 . . . . . . . . 9 ((𝐴𝐷𝐵𝐷) → ({𝐴} ∩ {𝐷}) = ∅)
2423adantl 277 . . . . . . . 8 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴} ∩ {𝐷}) = ∅)
25 disjsn2 3697 . . . . . . . . . 10 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
2625adantl 277 . . . . . . . . 9 ((𝐴𝐷𝐵𝐷) → ({𝐵} ∩ {𝐷}) = ∅)
2726adantl 277 . . . . . . . 8 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐵} ∩ {𝐷}) = ∅)
2824, 27jca 306 . . . . . . 7 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅))
29 un00 3508 . . . . . . 7 ((({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅) ↔ (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷})) = ∅)
3028, 29sylib 122 . . . . . 6 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴} ∩ {𝐷}) ∪ ({𝐵} ∩ {𝐷})) = ∅)
3121, 30eqtrid 2251 . . . . 5 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
3218, 31uneq12d 3329 . . . 4 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴, 𝐵} ∩ {𝐶}) ∪ ({𝐴, 𝐵} ∩ {𝐷})) = (∅ ∪ ∅))
33 un0 3495 . . . 4 (∅ ∪ ∅) = ∅
3432, 33eqtrdi 2255 . . 3 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → (({𝐴, 𝐵} ∩ {𝐶}) ∪ ({𝐴, 𝐵} ∩ {𝐷})) = ∅)
354, 34eqtrid 2251 . 2 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷})) = ∅)
363, 35eqtrd 2239 1 (((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wne 2377  cun 3165  cin 3166  c0 3461  {csn 3634  {cpr 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-sn 3640  df-pr 3641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator