ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmprop Unicode version

Theorem dmprop 5140
Description: The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.)
Hypotheses
Ref Expression
dmsnop.1  |-  B  e. 
_V
dmprop.1  |-  D  e. 
_V
Assertion
Ref Expression
dmprop  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  { A ,  C }

Proof of Theorem dmprop
StepHypRef Expression
1 dmsnop.1 . 2  |-  B  e. 
_V
2 dmprop.1 . 2  |-  D  e. 
_V
3 dmpropg 5138 . 2  |-  ( ( B  e.  _V  /\  D  e.  _V )  ->  dom  { <. A ,  B >. ,  <. C ,  D >. }  =  { A ,  C }
)
41, 2, 3mp2an 426 1  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  { A ,  C }
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760   {cpr 3619   <.cop 3621   dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-dm 4669
This theorem is referenced by:  dmtpop  5141  funtp  5307  fpr  5740
  Copyright terms: Public domain W3C validator