ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmprop Unicode version

Theorem dmprop 5085
Description: The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.)
Hypotheses
Ref Expression
dmsnop.1  |-  B  e. 
_V
dmprop.1  |-  D  e. 
_V
Assertion
Ref Expression
dmprop  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  { A ,  C }

Proof of Theorem dmprop
StepHypRef Expression
1 dmsnop.1 . 2  |-  B  e. 
_V
2 dmprop.1 . 2  |-  D  e. 
_V
3 dmpropg 5083 . 2  |-  ( ( B  e.  _V  /\  D  e.  _V )  ->  dom  { <. A ,  B >. ,  <. C ,  D >. }  =  { A ,  C }
)
41, 2, 3mp2an 424 1  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  { A ,  C }
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   _Vcvv 2730   {cpr 3584   <.cop 3586   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-dm 4621
This theorem is referenced by:  dmtpop  5086  funtp  5251  fpr  5678
  Copyright terms: Public domain W3C validator