ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmprop GIF version

Theorem dmprop 5053
Description: The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.)
Hypotheses
Ref Expression
dmsnop.1 𝐵 ∈ V
dmprop.1 𝐷 ∈ V
Assertion
Ref Expression
dmprop dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶}

Proof of Theorem dmprop
StepHypRef Expression
1 dmsnop.1 . 2 𝐵 ∈ V
2 dmprop.1 . 2 𝐷 ∈ V
3 dmpropg 5051 . 2 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶})
41, 2, 3mp2an 423 1 dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶}
Colors of variables: wff set class
Syntax hints:   = wceq 1332  wcel 2125  Vcvv 2709  {cpr 3557  cop 3559  dom cdm 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-dm 4589
This theorem is referenced by:  dmtpop  5054  funtp  5216  fpr  5642
  Copyright terms: Public domain W3C validator