Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmprop | GIF version |
Description: The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
dmsnop.1 | ⊢ 𝐵 ∈ V |
dmprop.1 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
dmprop | ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnop.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | dmprop.1 | . 2 ⊢ 𝐷 ∈ V | |
3 | dmpropg 5051 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐷 ∈ V) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) | |
4 | 1, 2, 3 | mp2an 423 | 1 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} |
Colors of variables: wff set class |
Syntax hints: = wceq 1332 ∈ wcel 2125 Vcvv 2709 {cpr 3557 〈cop 3559 dom cdm 4579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-dm 4589 |
This theorem is referenced by: dmtpop 5054 funtp 5216 fpr 5642 |
Copyright terms: Public domain | W3C validator |