| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmprop | GIF version | ||
| Description: The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.) |
| Ref | Expression |
|---|---|
| dmsnop.1 | ⊢ 𝐵 ∈ V |
| dmprop.1 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| dmprop | ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnop.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | dmprop.1 | . 2 ⊢ 𝐷 ∈ V | |
| 3 | dmpropg 5164 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐷 ∈ V) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 {cpr 3639 〈cop 3641 dom cdm 4683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-dm 4693 |
| This theorem is referenced by: dmtpop 5167 funtp 5336 fpr 5779 |
| Copyright terms: Public domain | W3C validator |