ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmtpop Unicode version

Theorem dmtpop 5145
Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
dmsnop.1  |-  B  e. 
_V
dmprop.1  |-  D  e. 
_V
dmtpop.1  |-  F  e. 
_V
Assertion
Ref Expression
dmtpop  |-  dom  { <. A ,  B >. , 
<. C ,  D >. , 
<. E ,  F >. }  =  { A ,  C ,  E }

Proof of Theorem dmtpop
StepHypRef Expression
1 df-tp 3630 . . . 4  |-  { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. }  =  ( { <. A ,  B >. ,  <. C ,  D >. }  u.  { <. E ,  F >. } )
21dmeqi 4867 . . 3  |-  dom  { <. A ,  B >. , 
<. C ,  D >. , 
<. E ,  F >. }  =  dom  ( {
<. A ,  B >. , 
<. C ,  D >. }  u.  { <. E ,  F >. } )
3 dmun 4873 . . 3  |-  dom  ( { <. A ,  B >. ,  <. C ,  D >. }  u.  { <. E ,  F >. } )  =  ( dom  { <. A ,  B >. , 
<. C ,  D >. }  u.  dom  { <. E ,  F >. } )
4 dmsnop.1 . . . . 5  |-  B  e. 
_V
5 dmprop.1 . . . . 5  |-  D  e. 
_V
64, 5dmprop 5144 . . . 4  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  { A ,  C }
7 dmtpop.1 . . . . 5  |-  F  e. 
_V
87dmsnop 5143 . . . 4  |-  dom  { <. E ,  F >. }  =  { E }
96, 8uneq12i 3315 . . 3  |-  ( dom 
{ <. A ,  B >. ,  <. C ,  D >. }  u.  dom  { <. E ,  F >. } )  =  ( { A ,  C }  u.  { E } )
102, 3, 93eqtri 2221 . 2  |-  dom  { <. A ,  B >. , 
<. C ,  D >. , 
<. E ,  F >. }  =  ( { A ,  C }  u.  { E } )
11 df-tp 3630 . 2  |-  { A ,  C ,  E }  =  ( { A ,  C }  u.  { E } )
1210, 11eqtr4i 2220 1  |-  dom  { <. A ,  B >. , 
<. C ,  D >. , 
<. E ,  F >. }  =  { A ,  C ,  E }
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   _Vcvv 2763    u. cun 3155   {csn 3622   {cpr 3623   {ctp 3624   <.cop 3625   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-br 4034  df-dm 4673
This theorem is referenced by:  fntp  5315
  Copyright terms: Public domain W3C validator