Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmpropg | Unicode version |
Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dmpropg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnopg 5075 | . . 3 | |
2 | dmsnopg 5075 | . . 3 | |
3 | uneq12 3271 | . . 3 | |
4 | 1, 2, 3 | syl2an 287 | . 2 |
5 | df-pr 3583 | . . . 4 | |
6 | 5 | dmeqi 4805 | . . 3 |
7 | dmun 4811 | . . 3 | |
8 | 6, 7 | eqtri 2186 | . 2 |
9 | df-pr 3583 | . 2 | |
10 | 4, 8, 9 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cun 3114 csn 3576 cpr 3577 cop 3579 cdm 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-dm 4614 |
This theorem is referenced by: dmprop 5078 funtpg 5239 fnprg 5243 |
Copyright terms: Public domain | W3C validator |