ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmpropg Unicode version

Theorem dmpropg 5103
Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmpropg  |-  ( ( B  e.  V  /\  D  e.  W )  ->  dom  { <. A ,  B >. ,  <. C ,  D >. }  =  { A ,  C }
)

Proof of Theorem dmpropg
StepHypRef Expression
1 dmsnopg 5102 . . 3  |-  ( B  e.  V  ->  dom  {
<. A ,  B >. }  =  { A }
)
2 dmsnopg 5102 . . 3  |-  ( D  e.  W  ->  dom  {
<. C ,  D >. }  =  { C }
)
3 uneq12 3286 . . 3  |-  ( ( dom  { <. A ,  B >. }  =  { A }  /\  dom  { <. C ,  D >. }  =  { C }
)  ->  ( dom  {
<. A ,  B >. }  u.  dom  { <. C ,  D >. } )  =  ( { A }  u.  { C } ) )
41, 2, 3syl2an 289 . 2  |-  ( ( B  e.  V  /\  D  e.  W )  ->  ( dom  { <. A ,  B >. }  u.  dom  { <. C ,  D >. } )  =  ( { A }  u.  { C } ) )
5 df-pr 3601 . . . 4  |-  { <. A ,  B >. ,  <. C ,  D >. }  =  ( { <. A ,  B >. }  u.  { <. C ,  D >. } )
65dmeqi 4830 . . 3  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  dom  ( {
<. A ,  B >. }  u.  { <. C ,  D >. } )
7 dmun 4836 . . 3  |-  dom  ( { <. A ,  B >. }  u.  { <. C ,  D >. } )  =  ( dom  { <. A ,  B >. }  u.  dom  { <. C ,  D >. } )
86, 7eqtri 2198 . 2  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  ( dom  { <. A ,  B >. }  u.  dom  { <. C ,  D >. } )
9 df-pr 3601 . 2  |-  { A ,  C }  =  ( { A }  u.  { C } )
104, 8, 93eqtr4g 2235 1  |-  ( ( B  e.  V  /\  D  e.  W )  ->  dom  { <. A ,  B >. ,  <. C ,  D >. }  =  { A ,  C }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    u. cun 3129   {csn 3594   {cpr 3595   <.cop 3597   dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-dm 4638
This theorem is referenced by:  dmprop  5105  funtpg  5269  fnprg  5273
  Copyright terms: Public domain W3C validator