ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmpropg Unicode version

Theorem dmpropg 5081
Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmpropg  |-  ( ( B  e.  V  /\  D  e.  W )  ->  dom  { <. A ,  B >. ,  <. C ,  D >. }  =  { A ,  C }
)

Proof of Theorem dmpropg
StepHypRef Expression
1 dmsnopg 5080 . . 3  |-  ( B  e.  V  ->  dom  {
<. A ,  B >. }  =  { A }
)
2 dmsnopg 5080 . . 3  |-  ( D  e.  W  ->  dom  {
<. C ,  D >. }  =  { C }
)
3 uneq12 3276 . . 3  |-  ( ( dom  { <. A ,  B >. }  =  { A }  /\  dom  { <. C ,  D >. }  =  { C }
)  ->  ( dom  {
<. A ,  B >. }  u.  dom  { <. C ,  D >. } )  =  ( { A }  u.  { C } ) )
41, 2, 3syl2an 287 . 2  |-  ( ( B  e.  V  /\  D  e.  W )  ->  ( dom  { <. A ,  B >. }  u.  dom  { <. C ,  D >. } )  =  ( { A }  u.  { C } ) )
5 df-pr 3588 . . . 4  |-  { <. A ,  B >. ,  <. C ,  D >. }  =  ( { <. A ,  B >. }  u.  { <. C ,  D >. } )
65dmeqi 4810 . . 3  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  dom  ( {
<. A ,  B >. }  u.  { <. C ,  D >. } )
7 dmun 4816 . . 3  |-  dom  ( { <. A ,  B >. }  u.  { <. C ,  D >. } )  =  ( dom  { <. A ,  B >. }  u.  dom  { <. C ,  D >. } )
86, 7eqtri 2191 . 2  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  ( dom  { <. A ,  B >. }  u.  dom  { <. C ,  D >. } )
9 df-pr 3588 . 2  |-  { A ,  C }  =  ( { A }  u.  { C } )
104, 8, 93eqtr4g 2228 1  |-  ( ( B  e.  V  /\  D  e.  W )  ->  dom  { <. A ,  B >. ,  <. C ,  D >. }  =  { A ,  C }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    u. cun 3119   {csn 3581   {cpr 3582   <.cop 3584   dom cdm 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-dm 4619
This theorem is referenced by:  dmprop  5083  funtpg  5247  fnprg  5251
  Copyright terms: Public domain W3C validator