ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnop Unicode version

Theorem dmsnop 4872
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
dmsnop.1  |-  B  e. 
_V
Assertion
Ref Expression
dmsnop  |-  dom  { <. A ,  B >. }  =  { A }

Proof of Theorem dmsnop
StepHypRef Expression
1 dmsnop.1 . 2  |-  B  e. 
_V
2 dmsnopg 4870 . 2  |-  ( B  e.  _V  ->  dom  {
<. A ,  B >. }  =  { A }
)
31, 2ax-mp 7 1  |-  dom  { <. A ,  B >. }  =  { A }
Colors of variables: wff set class
Syntax hints:    = wceq 1287    e. wcel 1436   _Vcvv 2615   {csn 3431   <.cop 3434   dom cdm 4413
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-br 3823  df-dm 4423
This theorem is referenced by:  dmtpop  4874  dmsnsnsng  4876  op1sta  4880  funtp  5034  ac6sfi  6568
  Copyright terms: Public domain W3C validator