![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1pi | Unicode version |
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1pi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6535 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1n0 6447 |
. 2
![]() ![]() ![]() ![]() | |
3 | elni 7321 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mpbir2an 943 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-uni 3822 df-int 3857 df-suc 4383 df-iom 4602 df-1o 6431 df-ni 7317 |
This theorem is referenced by: mulidpi 7331 1lt2pi 7353 nlt1pig 7354 indpi 7355 1nq 7379 1qec 7401 mulidnq 7402 1lt2nq 7419 archnqq 7430 prarloclemarch 7431 prarloclemarch2 7432 nnnq 7435 ltnnnq 7436 nq0m0r 7469 nq0a0 7470 addpinq1 7477 nq02m 7478 prarloclemlt 7506 prarloclemlo 7507 prarloclemn 7512 prarloclemcalc 7515 nqprm 7555 caucvgprlemm 7681 caucvgprprlemml 7707 caucvgprprlemmu 7708 caucvgsrlemasr 7803 caucvgsr 7815 nntopi 7907 |
Copyright terms: Public domain | W3C validator |