| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1pi | Unicode version | ||
| Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1pi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6664 |
. 2
| |
| 2 | 1n0 6576 |
. 2
| |
| 3 | elni 7491 |
. 2
| |
| 4 | 1, 2, 3 | mpbir2an 948 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4461 df-iom 4682 df-1o 6560 df-ni 7487 |
| This theorem is referenced by: mulidpi 7501 1lt2pi 7523 nlt1pig 7524 indpi 7525 1nq 7549 1qec 7571 mulidnq 7572 1lt2nq 7589 archnqq 7600 prarloclemarch 7601 prarloclemarch2 7602 nnnq 7605 ltnnnq 7606 nq0m0r 7639 nq0a0 7640 addpinq1 7647 nq02m 7648 prarloclemlt 7676 prarloclemlo 7677 prarloclemn 7682 prarloclemcalc 7685 nqprm 7725 caucvgprlemm 7851 caucvgprprlemml 7877 caucvgprprlemmu 7878 caucvgsrlemasr 7973 caucvgsr 7985 nntopi 8077 |
| Copyright terms: Public domain | W3C validator |