![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1pi | Unicode version |
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1pi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6573 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1n0 6485 |
. 2
![]() ![]() ![]() ![]() | |
3 | elni 7368 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mpbir2an 944 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-suc 4402 df-iom 4623 df-1o 6469 df-ni 7364 |
This theorem is referenced by: mulidpi 7378 1lt2pi 7400 nlt1pig 7401 indpi 7402 1nq 7426 1qec 7448 mulidnq 7449 1lt2nq 7466 archnqq 7477 prarloclemarch 7478 prarloclemarch2 7479 nnnq 7482 ltnnnq 7483 nq0m0r 7516 nq0a0 7517 addpinq1 7524 nq02m 7525 prarloclemlt 7553 prarloclemlo 7554 prarloclemn 7559 prarloclemcalc 7562 nqprm 7602 caucvgprlemm 7728 caucvgprprlemml 7754 caucvgprprlemmu 7755 caucvgsrlemasr 7850 caucvgsr 7862 nntopi 7954 |
Copyright terms: Public domain | W3C validator |