| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1pi | Unicode version | ||
| Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1pi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6579 |
. 2
| |
| 2 | 1n0 6491 |
. 2
| |
| 3 | elni 7377 |
. 2
| |
| 4 | 1, 2, 3 | mpbir2an 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 df-1o 6475 df-ni 7373 |
| This theorem is referenced by: mulidpi 7387 1lt2pi 7409 nlt1pig 7410 indpi 7411 1nq 7435 1qec 7457 mulidnq 7458 1lt2nq 7475 archnqq 7486 prarloclemarch 7487 prarloclemarch2 7488 nnnq 7491 ltnnnq 7492 nq0m0r 7525 nq0a0 7526 addpinq1 7533 nq02m 7534 prarloclemlt 7562 prarloclemlo 7563 prarloclemn 7568 prarloclemcalc 7571 nqprm 7611 caucvgprlemm 7737 caucvgprprlemml 7763 caucvgprprlemmu 7764 caucvgsrlemasr 7859 caucvgsr 7871 nntopi 7963 |
| Copyright terms: Public domain | W3C validator |