| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1pi | Unicode version | ||
| Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1pi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6629 |
. 2
| |
| 2 | 1n0 6541 |
. 2
| |
| 3 | elni 7456 |
. 2
| |
| 4 | 1, 2, 3 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 df-1o 6525 df-ni 7452 |
| This theorem is referenced by: mulidpi 7466 1lt2pi 7488 nlt1pig 7489 indpi 7490 1nq 7514 1qec 7536 mulidnq 7537 1lt2nq 7554 archnqq 7565 prarloclemarch 7566 prarloclemarch2 7567 nnnq 7570 ltnnnq 7571 nq0m0r 7604 nq0a0 7605 addpinq1 7612 nq02m 7613 prarloclemlt 7641 prarloclemlo 7642 prarloclemn 7647 prarloclemcalc 7650 nqprm 7690 caucvgprlemm 7816 caucvgprprlemml 7842 caucvgprprlemmu 7843 caucvgsrlemasr 7938 caucvgsr 7950 nntopi 8042 |
| Copyright terms: Public domain | W3C validator |