ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemcalc Unicode version

Theorem prarloclemcalc 7650
Description: Some calculations for prarloc 7651. (Contributed by Jim Kingdon, 26-Oct-2019.)
Assertion
Ref Expression
prarloclemcalc  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  <Q  ( A  +Q  P
) )

Proof of Theorem prarloclemcalc
StepHypRef Expression
1 simprll 537 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  Q  e.  Q. )
2 nqnq0a 7602 . . . . 5  |-  ( ( Q  e.  Q.  /\  Q  e.  Q. )  ->  ( Q  +Q  Q
)  =  ( Q +Q0  Q
) )
31, 1, 2syl2anc 411 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( Q  +Q  Q )  =  ( Q +Q0  Q ) )
43oveq2d 5983 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( A +Q0  ( Q  +Q  Q ) )  =  ( A +Q0  ( Q +Q0  Q ) ) )
5 simpll 527 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) )
6 simprrl 539 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  X  e.  Q. )
7 simprrr 540 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  M  e.  om )
8 1pi 7463 . . . . . . . . . . 11  |-  1o  e.  N.
9 opelxpi 4725 . . . . . . . . . . 11  |-  ( ( M  e.  om  /\  1o  e.  N. )  ->  <. M ,  1o >.  e.  ( om  X.  N. ) )
108, 9mpan2 425 . . . . . . . . . 10  |-  ( M  e.  om  ->  <. M ,  1o >.  e.  ( om 
X.  N. ) )
11 enq0ex 7587 . . . . . . . . . . 11  |- ~Q0  e.  _V
1211ecelqsi 6699 . . . . . . . . . 10  |-  ( <. M ,  1o >.  e.  ( om  X.  N. )  ->  [ <. M ,  1o >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
1310, 12syl 14 . . . . . . . . 9  |-  ( M  e.  om  ->  [ <. M ,  1o >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
14 df-nq0 7573 . . . . . . . . 9  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
1513, 14eleqtrrdi 2301 . . . . . . . 8  |-  ( M  e.  om  ->  [ <. M ,  1o >. ] ~Q0  e. Q0 )
167, 15syl 14 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  [ <. M ,  1o >. ] ~Q0  e. Q0 )
17 nqnq0 7589 . . . . . . . 8  |-  Q.  C_ Q0
1817, 1sselid 3199 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  Q  e. Q0 )
19 mulclnq0 7600 . . . . . . 7  |-  ( ( [ <. M ,  1o >. ] ~Q0  e. Q0  /\  Q  e. Q0 )  ->  ( [ <. M ,  1o >. ] ~Q0 ·Q0 
Q )  e. Q0 )
2016, 18, 19syl2anc 411 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )  e. Q0 )
21 nqpnq0nq 7601 . . . . . 6  |-  ( ( X  e.  Q.  /\  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )  e. Q0 )  ->  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) )  e.  Q. )
226, 20, 21syl2anc 411 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  e.  Q. )
235, 22eqeltrd 2284 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  A  e.  Q. )
24 addclnq 7523 . . . . 5  |-  ( ( Q  e.  Q.  /\  Q  e.  Q. )  ->  ( Q  +Q  Q
)  e.  Q. )
251, 1, 24syl2anc 411 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( Q  +Q  Q )  e. 
Q. )
26 nqnq0a 7602 . . . 4  |-  ( ( A  e.  Q.  /\  ( Q  +Q  Q
)  e.  Q. )  ->  ( A  +Q  ( Q  +Q  Q ) )  =  ( A +Q0  ( Q  +Q  Q
) ) )
2723, 25, 26syl2anc 411 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( A  +Q  ( Q  +Q  Q ) )  =  ( A +Q0  ( Q  +Q  Q
) ) )
28 simplr 528 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )
29 2onn 6630 . . . . . . . . . . . . . 14  |-  2o  e.  om
30 2on0 6535 . . . . . . . . . . . . . 14  |-  2o  =/=  (/)
31 elni 7456 . . . . . . . . . . . . . 14  |-  ( 2o  e.  N.  <->  ( 2o  e.  om  /\  2o  =/=  (/) ) )
3229, 30, 31mpbir2an 945 . . . . . . . . . . . . 13  |-  2o  e.  N.
33 nnppipi 7491 . . . . . . . . . . . . 13  |-  ( ( M  e.  om  /\  2o  e.  N. )  -> 
( M  +o  2o )  e.  N. )
3432, 33mpan2 425 . . . . . . . . . . . 12  |-  ( M  e.  om  ->  ( M  +o  2o )  e. 
N. )
35 opelxpi 4725 . . . . . . . . . . . 12  |-  ( ( ( M  +o  2o )  e.  N.  /\  1o  e.  N. )  ->  <. ( M  +o  2o ) ,  1o >.  e.  ( N.  X.  N. ) )
3634, 8, 35sylancl 413 . . . . . . . . . . 11  |-  ( M  e.  om  ->  <. ( M  +o  2o ) ,  1o >.  e.  ( N.  X.  N. ) )
37 enqex 7508 . . . . . . . . . . . 12  |-  ~Q  e.  _V
3837ecelqsi 6699 . . . . . . . . . . 11  |-  ( <.
( M  +o  2o ) ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
3936, 38syl 14 . . . . . . . . . 10  |-  ( M  e.  om  ->  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
40 df-nqqs 7496 . . . . . . . . . 10  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
4139, 40eleqtrrdi 2301 . . . . . . . . 9  |-  ( M  e.  om  ->  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  Q. )
427, 41syl 14 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  Q. )
43 mulclnq 7524 . . . . . . . 8  |-  ( ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  Q  e.  Q. )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  e.  Q. )
4442, 1, 43syl2anc 411 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  e.  Q. )
45 nqnq0a 7602 . . . . . . 7  |-  ( ( X  e.  Q.  /\  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  e.  Q. )  -> 
( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) )  =  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )
466, 44, 45syl2anc 411 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) )  =  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )
47 nqnq0m 7603 . . . . . . . . 9  |-  ( ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  Q  e.  Q. )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  =  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q ·Q0  Q ) )
4842, 1, 47syl2anc 411 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  =  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q ·Q0  Q )
)
49 nqnq0pi 7586 . . . . . . . . . . 11  |-  ( ( ( M  +o  2o )  e.  N.  /\  1o  e.  N. )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  )
5034, 8, 49sylancl 413 . . . . . . . . . 10  |-  ( M  e.  om  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  )
517, 50syl 14 . . . . . . . . 9  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  )
5251oveq1d 5982 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q )  =  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q ·Q0  Q ) )
5348, 52eqtr4d 2243 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  =  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0  Q ) )
5453oveq2d 5983 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) )  =  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q ) ) )
5528, 46, 543eqtrd 2244 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0  Q ) ) )
56 nnanq0 7606 . . . . . . . . . 10  |-  ( ( M  e.  om  /\  2o  e.  om  /\  1o  e.  N. )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  ( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  )
)
578, 56mp3an3 1339 . . . . . . . . 9  |-  ( ( M  e.  om  /\  2o  e.  om )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  ( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) )
587, 29, 57sylancl 413 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  ( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  )
)
5958oveq1d 5982 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q )  =  ( ( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) ·Q0  Q ) )
60 opelxpi 4725 . . . . . . . . . . . 12  |-  ( ( 2o  e.  om  /\  1o  e.  N. )  ->  <. 2o ,  1o >.  e.  ( om  X.  N. ) )
6129, 8, 60mp2an 426 . . . . . . . . . . 11  |-  <. 2o ,  1o >.  e.  ( om 
X.  N. )
6211ecelqsi 6699 . . . . . . . . . . 11  |-  ( <. 2o ,  1o >.  e.  ( om  X.  N. )  ->  [ <. 2o ,  1o >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
6361, 62ax-mp 5 . . . . . . . . . 10  |-  [ <. 2o ,  1o >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  )
6463, 14eleqtrri 2283 . . . . . . . . 9  |-  [ <. 2o ,  1o >. ] ~Q0  e. Q0
65 distnq0r 7611 . . . . . . . . 9  |-  ( ( Q  e. Q0  /\  [ <. M ,  1o >. ] ~Q0  e. Q0  /\  [ <. 2o ,  1o >. ] ~Q0  e. Q0 )  ->  ( ( [
<. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) ·Q0  Q
)  =  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [
<. 2o ,  1o >. ] ~Q0 ·Q0 
Q ) ) )
6664, 65mp3an3 1339 . . . . . . . 8  |-  ( ( Q  e. Q0  /\  [ <. M ,  1o >. ] ~Q0  e. Q0 )  ->  ( ( [
<. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) ·Q0  Q
)  =  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [
<. 2o ,  1o >. ] ~Q0 ·Q0 
Q ) ) )
6718, 16, 66syl2anc 411 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  (
( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) ·Q0  Q )  =  ( ( [
<. M ,  1o >. ] ~Q0 ·Q0 
Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q ) ) )
6859, 67eqtrd 2240 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q )  =  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) )
6968oveq2d 5983 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q ) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) ) )
70 nq02m 7613 . . . . . . . . 9  |-  ( Q  e. Q0  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )  =  ( Q +Q0  Q ) )
7170oveq2d 5983 . . . . . . . 8  |-  ( Q  e. Q0  ->  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
)  =  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q
) ) )
7271oveq2d 5983 . . . . . . 7  |-  ( Q  e. Q0  ->  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q ) ) ) )
7318, 72syl 14 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q ) ) ) )
7417, 6sselid 3199 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  X  e. Q0 )
75 addclnq0 7599 . . . . . . . 8  |-  ( ( Q  e. Q0  /\  Q  e. Q0 )  ->  ( Q +Q0  Q )  e. Q0 )
7618, 18, 75syl2anc 411 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( Q +Q0  Q )  e. Q0 )
77 addassnq0 7610 . . . . . . 7  |-  ( ( X  e. Q0  /\  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )  e. Q0  /\  ( Q +Q0  Q )  e. Q0 )  ->  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
) +Q0  ( Q +Q0  Q ) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q ) ) ) )
7874, 20, 76, 77syl3anc 1250 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  (
( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q ) ) ) )
7973, 78eqtr4d 2243 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) )  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) ) )
8055, 69, 793eqtrd 2244 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
) +Q0  ( Q +Q0  Q ) ) )
81 oveq1 5974 . . . . . 6  |-  ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) )  ->  ( A +Q0  ( Q +Q0  Q
) )  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) ) )
8281eqeq2d 2219 . . . . 5  |-  ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) )  ->  ( B  =  ( A +Q0  ( Q +Q0  Q ) )  <->  B  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) ) ) )
835, 82syl 14 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( B  =  ( A +Q0  ( Q +Q0  Q
) )  <->  B  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) ) ) )
8480, 83mpbird 167 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( A +Q0  ( Q +Q0  Q ) ) )
854, 27, 843eqtr4rd 2251 . 2  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( A  +Q  ( Q  +Q  Q
) ) )
86 simprlr 538 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( Q  +Q  Q )  <Q  P )
87 ltrelnq 7513 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
8887brel 4745 . . . . 5  |-  ( ( Q  +Q  Q ) 
<Q  P  ->  ( ( Q  +Q  Q )  e.  Q.  /\  P  e.  Q. ) )
8986, 88syl 14 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  (
( Q  +Q  Q
)  e.  Q.  /\  P  e.  Q. )
)
90 ltanqg 7548 . . . . 5  |-  ( ( ( Q  +Q  Q
)  e.  Q.  /\  P  e.  Q.  /\  A  e.  Q. )  ->  (
( Q  +Q  Q
)  <Q  P  <->  ( A  +Q  ( Q  +Q  Q
) )  <Q  ( A  +Q  P ) ) )
91903expa 1206 . . . 4  |-  ( ( ( ( Q  +Q  Q )  e.  Q.  /\  P  e.  Q. )  /\  A  e.  Q. )  ->  ( ( Q  +Q  Q )  <Q  P 
<->  ( A  +Q  ( Q  +Q  Q ) ) 
<Q  ( A  +Q  P
) ) )
9289, 23, 91syl2anc 411 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  (
( Q  +Q  Q
)  <Q  P  <->  ( A  +Q  ( Q  +Q  Q
) )  <Q  ( A  +Q  P ) ) )
9386, 92mpbid 147 . 2  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( A  +Q  ( Q  +Q  Q ) )  <Q 
( A  +Q  P
) )
9485, 93eqbrtrd 4081 1  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  <Q  ( A  +Q  P
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    =/= wne 2378   (/)c0 3468   <.cop 3646   class class class wbr 4059   omcom 4656    X. cxp 4691  (class class class)co 5967   1oc1o 6518   2oc2o 6519    +o coa 6522   [cec 6641   /.cqs 6642   N.cnpi 7420    ~Q ceq 7427   Q.cnq 7428    +Q cplq 7430    .Q cmq 7431    <Q cltq 7433   ~Q0 ceq0 7434  Q0cnq0 7435   +Q0 cplq0 7437   ·Q0 cmq0 7438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-plq0 7575  df-mq0 7576
This theorem is referenced by:  prarloc  7651
  Copyright terms: Public domain W3C validator