ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemcalc Unicode version

Theorem prarloclemcalc 7310
Description: Some calculations for prarloc 7311. (Contributed by Jim Kingdon, 26-Oct-2019.)
Assertion
Ref Expression
prarloclemcalc  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  <Q  ( A  +Q  P
) )

Proof of Theorem prarloclemcalc
StepHypRef Expression
1 simprll 526 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  Q  e.  Q. )
2 nqnq0a 7262 . . . . 5  |-  ( ( Q  e.  Q.  /\  Q  e.  Q. )  ->  ( Q  +Q  Q
)  =  ( Q +Q0  Q
) )
31, 1, 2syl2anc 408 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( Q  +Q  Q )  =  ( Q +Q0  Q ) )
43oveq2d 5790 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( A +Q0  ( Q  +Q  Q ) )  =  ( A +Q0  ( Q +Q0  Q ) ) )
5 simpll 518 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) )
6 simprrl 528 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  X  e.  Q. )
7 simprrr 529 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  M  e.  om )
8 1pi 7123 . . . . . . . . . . 11  |-  1o  e.  N.
9 opelxpi 4571 . . . . . . . . . . 11  |-  ( ( M  e.  om  /\  1o  e.  N. )  ->  <. M ,  1o >.  e.  ( om  X.  N. ) )
108, 9mpan2 421 . . . . . . . . . 10  |-  ( M  e.  om  ->  <. M ,  1o >.  e.  ( om 
X.  N. ) )
11 enq0ex 7247 . . . . . . . . . . 11  |- ~Q0  e.  _V
1211ecelqsi 6483 . . . . . . . . . 10  |-  ( <. M ,  1o >.  e.  ( om  X.  N. )  ->  [ <. M ,  1o >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
1310, 12syl 14 . . . . . . . . 9  |-  ( M  e.  om  ->  [ <. M ,  1o >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
14 df-nq0 7233 . . . . . . . . 9  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
1513, 14eleqtrrdi 2233 . . . . . . . 8  |-  ( M  e.  om  ->  [ <. M ,  1o >. ] ~Q0  e. Q0 )
167, 15syl 14 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  [ <. M ,  1o >. ] ~Q0  e. Q0 )
17 nqnq0 7249 . . . . . . . 8  |-  Q.  C_ Q0
1817, 1sseldi 3095 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  Q  e. Q0 )
19 mulclnq0 7260 . . . . . . 7  |-  ( ( [ <. M ,  1o >. ] ~Q0  e. Q0  /\  Q  e. Q0 )  ->  ( [ <. M ,  1o >. ] ~Q0 ·Q0 
Q )  e. Q0 )
2016, 18, 19syl2anc 408 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )  e. Q0 )
21 nqpnq0nq 7261 . . . . . 6  |-  ( ( X  e.  Q.  /\  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )  e. Q0 )  ->  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) )  e.  Q. )
226, 20, 21syl2anc 408 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  e.  Q. )
235, 22eqeltrd 2216 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  A  e.  Q. )
24 addclnq 7183 . . . . 5  |-  ( ( Q  e.  Q.  /\  Q  e.  Q. )  ->  ( Q  +Q  Q
)  e.  Q. )
251, 1, 24syl2anc 408 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( Q  +Q  Q )  e. 
Q. )
26 nqnq0a 7262 . . . 4  |-  ( ( A  e.  Q.  /\  ( Q  +Q  Q
)  e.  Q. )  ->  ( A  +Q  ( Q  +Q  Q ) )  =  ( A +Q0  ( Q  +Q  Q
) ) )
2723, 25, 26syl2anc 408 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( A  +Q  ( Q  +Q  Q ) )  =  ( A +Q0  ( Q  +Q  Q
) ) )
28 simplr 519 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )
29 2onn 6417 . . . . . . . . . . . . . 14  |-  2o  e.  om
30 2on0 6323 . . . . . . . . . . . . . 14  |-  2o  =/=  (/)
31 elni 7116 . . . . . . . . . . . . . 14  |-  ( 2o  e.  N.  <->  ( 2o  e.  om  /\  2o  =/=  (/) ) )
3229, 30, 31mpbir2an 926 . . . . . . . . . . . . 13  |-  2o  e.  N.
33 nnppipi 7151 . . . . . . . . . . . . 13  |-  ( ( M  e.  om  /\  2o  e.  N. )  -> 
( M  +o  2o )  e.  N. )
3432, 33mpan2 421 . . . . . . . . . . . 12  |-  ( M  e.  om  ->  ( M  +o  2o )  e. 
N. )
35 opelxpi 4571 . . . . . . . . . . . 12  |-  ( ( ( M  +o  2o )  e.  N.  /\  1o  e.  N. )  ->  <. ( M  +o  2o ) ,  1o >.  e.  ( N.  X.  N. ) )
3634, 8, 35sylancl 409 . . . . . . . . . . 11  |-  ( M  e.  om  ->  <. ( M  +o  2o ) ,  1o >.  e.  ( N.  X.  N. ) )
37 enqex 7168 . . . . . . . . . . . 12  |-  ~Q  e.  _V
3837ecelqsi 6483 . . . . . . . . . . 11  |-  ( <.
( M  +o  2o ) ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
3936, 38syl 14 . . . . . . . . . 10  |-  ( M  e.  om  ->  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
40 df-nqqs 7156 . . . . . . . . . 10  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
4139, 40eleqtrrdi 2233 . . . . . . . . 9  |-  ( M  e.  om  ->  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  Q. )
427, 41syl 14 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  Q. )
43 mulclnq 7184 . . . . . . . 8  |-  ( ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  Q  e.  Q. )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  e.  Q. )
4442, 1, 43syl2anc 408 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  e.  Q. )
45 nqnq0a 7262 . . . . . . 7  |-  ( ( X  e.  Q.  /\  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  e.  Q. )  -> 
( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) )  =  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )
466, 44, 45syl2anc 408 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) )  =  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )
47 nqnq0m 7263 . . . . . . . . 9  |-  ( ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  Q  e.  Q. )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  =  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q ·Q0  Q ) )
4842, 1, 47syl2anc 408 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  =  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q ·Q0  Q )
)
49 nqnq0pi 7246 . . . . . . . . . . 11  |-  ( ( ( M  +o  2o )  e.  N.  /\  1o  e.  N. )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  )
5034, 8, 49sylancl 409 . . . . . . . . . 10  |-  ( M  e.  om  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  )
517, 50syl 14 . . . . . . . . 9  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  )
5251oveq1d 5789 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q )  =  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q ·Q0  Q ) )
5348, 52eqtr4d 2175 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q )  =  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0  Q ) )
5453oveq2d 5790 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) )  =  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q ) ) )
5528, 46, 543eqtrd 2176 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0  Q ) ) )
56 nnanq0 7266 . . . . . . . . . 10  |-  ( ( M  e.  om  /\  2o  e.  om  /\  1o  e.  N. )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  ( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  )
)
578, 56mp3an3 1304 . . . . . . . . 9  |-  ( ( M  e.  om  /\  2o  e.  om )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  ( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) )
587, 29, 57sylancl 409 . . . . . . . 8  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  [ <. ( M  +o  2o ) ,  1o >. ] ~Q0  =  ( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  )
)
5958oveq1d 5789 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q )  =  ( ( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) ·Q0  Q ) )
60 opelxpi 4571 . . . . . . . . . . . 12  |-  ( ( 2o  e.  om  /\  1o  e.  N. )  ->  <. 2o ,  1o >.  e.  ( om  X.  N. ) )
6129, 8, 60mp2an 422 . . . . . . . . . . 11  |-  <. 2o ,  1o >.  e.  ( om 
X.  N. )
6211ecelqsi 6483 . . . . . . . . . . 11  |-  ( <. 2o ,  1o >.  e.  ( om  X.  N. )  ->  [ <. 2o ,  1o >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
6361, 62ax-mp 5 . . . . . . . . . 10  |-  [ <. 2o ,  1o >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  )
6463, 14eleqtrri 2215 . . . . . . . . 9  |-  [ <. 2o ,  1o >. ] ~Q0  e. Q0
65 distnq0r 7271 . . . . . . . . 9  |-  ( ( Q  e. Q0  /\  [ <. M ,  1o >. ] ~Q0  e. Q0  /\  [ <. 2o ,  1o >. ] ~Q0  e. Q0 )  ->  ( ( [
<. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) ·Q0  Q
)  =  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [
<. 2o ,  1o >. ] ~Q0 ·Q0 
Q ) ) )
6664, 65mp3an3 1304 . . . . . . . 8  |-  ( ( Q  e. Q0  /\  [ <. M ,  1o >. ] ~Q0  e. Q0 )  ->  ( ( [
<. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) ·Q0  Q
)  =  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [
<. 2o ,  1o >. ] ~Q0 ·Q0 
Q ) ) )
6718, 16, 66syl2anc 408 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  (
( [ <. M ,  1o >. ] ~Q0 +Q0  [ <. 2o ,  1o >. ] ~Q0  ) ·Q0  Q )  =  ( ( [
<. M ,  1o >. ] ~Q0 ·Q0 
Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q ) ) )
6859, 67eqtrd 2172 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q )  =  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) )
6968oveq2d 5790 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( [ <. ( M  +o  2o ) ,  1o >. ] ~Q0 ·Q0 
Q ) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) ) )
70 nq02m 7273 . . . . . . . . 9  |-  ( Q  e. Q0  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )  =  ( Q +Q0  Q ) )
7170oveq2d 5790 . . . . . . . 8  |-  ( Q  e. Q0  ->  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
)  =  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q
) ) )
7271oveq2d 5790 . . . . . . 7  |-  ( Q  e. Q0  ->  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q ) ) ) )
7318, 72syl 14 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q ) ) ) )
7417, 6sseldi 3095 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  X  e. Q0 )
75 addclnq0 7259 . . . . . . . 8  |-  ( ( Q  e. Q0  /\  Q  e. Q0 )  ->  ( Q +Q0  Q )  e. Q0 )
7618, 18, 75syl2anc 408 . . . . . . 7  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( Q +Q0  Q )  e. Q0 )
77 addassnq0 7270 . . . . . . 7  |-  ( ( X  e. Q0  /\  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )  e. Q0  /\  ( Q +Q0  Q )  e. Q0 )  ->  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
) +Q0  ( Q +Q0  Q ) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q ) ) ) )
7874, 20, 76, 77syl3anc 1216 . . . . . 6  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  (
( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) )  =  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( Q +Q0  Q ) ) ) )
7973, 78eqtr4d 2175 . . . . 5  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( X +Q0  ( ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) +Q0  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  Q )
) )  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) ) )
8055, 69, 793eqtrd 2176 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
) +Q0  ( Q +Q0  Q ) ) )
81 oveq1 5781 . . . . . 6  |-  ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) )  ->  ( A +Q0  ( Q +Q0  Q
) )  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) ) )
8281eqeq2d 2151 . . . . 5  |-  ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) )  ->  ( B  =  ( A +Q0  ( Q +Q0  Q ) )  <->  B  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) ) ) )
835, 82syl 14 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( B  =  ( A +Q0  ( Q +Q0  Q
) )  <->  B  =  ( ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q ) ) +Q0  ( Q +Q0  Q ) ) ) )
8480, 83mpbird 166 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( A +Q0  ( Q +Q0  Q ) ) )
854, 27, 843eqtr4rd 2183 . 2  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  =  ( A  +Q  ( Q  +Q  Q
) ) )
86 simprlr 527 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( Q  +Q  Q )  <Q  P )
87 ltrelnq 7173 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
8887brel 4591 . . . . 5  |-  ( ( Q  +Q  Q ) 
<Q  P  ->  ( ( Q  +Q  Q )  e.  Q.  /\  P  e.  Q. ) )
8986, 88syl 14 . . . 4  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  (
( Q  +Q  Q
)  e.  Q.  /\  P  e.  Q. )
)
90 ltanqg 7208 . . . . 5  |-  ( ( ( Q  +Q  Q
)  e.  Q.  /\  P  e.  Q.  /\  A  e.  Q. )  ->  (
( Q  +Q  Q
)  <Q  P  <->  ( A  +Q  ( Q  +Q  Q
) )  <Q  ( A  +Q  P ) ) )
91903expa 1181 . . . 4  |-  ( ( ( ( Q  +Q  Q )  e.  Q.  /\  P  e.  Q. )  /\  A  e.  Q. )  ->  ( ( Q  +Q  Q )  <Q  P 
<->  ( A  +Q  ( Q  +Q  Q ) ) 
<Q  ( A  +Q  P
) ) )
9289, 23, 91syl2anc 408 . . 3  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  (
( Q  +Q  Q
)  <Q  P  <->  ( A  +Q  ( Q  +Q  Q
) )  <Q  ( A  +Q  P ) ) )
9386, 92mpbid 146 . 2  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  ( A  +Q  ( Q  +Q  Q ) )  <Q 
( A  +Q  P
) )
9485, 93eqbrtrd 3950 1  |-  ( ( ( A  =  ( X +Q0  ( [ <. M ,  1o >. ] ~Q0 ·Q0  Q )
)  /\  B  =  ( X  +Q  ( [ <. ( M  +o  2o ) ,  1o >. ]  ~Q  .Q  Q ) ) )  /\  (
( Q  e.  Q.  /\  ( Q  +Q  Q
)  <Q  P )  /\  ( X  e.  Q.  /\  M  e.  om )
) )  ->  B  <Q  ( A  +Q  P
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480    =/= wne 2308   (/)c0 3363   <.cop 3530   class class class wbr 3929   omcom 4504    X. cxp 4537  (class class class)co 5774   1oc1o 6306   2oc2o 6307    +o coa 6310   [cec 6427   /.cqs 6428   N.cnpi 7080    ~Q ceq 7087   Q.cnq 7088    +Q cplq 7090    .Q cmq 7091    <Q cltq 7093   ~Q0 ceq0 7094  Q0cnq0 7095   +Q0 cplq0 7097   ·Q0 cmq0 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-plq0 7235  df-mq0 7236
This theorem is referenced by:  prarloc  7311
  Copyright terms: Public domain W3C validator