Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulclpi | Unicode version |
Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
mulclpi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulpiord 7258 | . 2 | |
2 | pinn 7250 | . . . 4 | |
3 | pinn 7250 | . . . 4 | |
4 | nnmcl 6449 | . . . 4 | |
5 | 2, 3, 4 | syl2an 287 | . . 3 |
6 | elni2 7255 | . . . . . . 7 | |
7 | 6 | simprbi 273 | . . . . . 6 |
8 | 7 | adantl 275 | . . . . 5 |
9 | 3 | adantl 275 | . . . . . 6 |
10 | 2 | adantr 274 | . . . . . 6 |
11 | elni2 7255 | . . . . . . . 8 | |
12 | 11 | simprbi 273 | . . . . . . 7 |
13 | 12 | adantr 274 | . . . . . 6 |
14 | nnmordi 6484 | . . . . . 6 | |
15 | 9, 10, 13, 14 | syl21anc 1227 | . . . . 5 |
16 | 8, 15 | mpd 13 | . . . 4 |
17 | ne0i 3415 | . . . 4 | |
18 | 16, 17 | syl 14 | . . 3 |
19 | elni 7249 | . . 3 | |
20 | 5, 18, 19 | sylanbrc 414 | . 2 |
21 | 1, 20 | eqeltrd 2243 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 wne 2336 c0 3409 com 4567 (class class class)co 5842 comu 6382 cnpi 7213 cmi 7215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 df-ni 7245 df-mi 7247 |
This theorem is referenced by: mulasspig 7273 distrpig 7274 ltmpig 7280 enqer 7299 enqdc 7302 addcmpblnq 7308 mulcmpblnq 7309 addpipqqslem 7310 mulpipq2 7312 mulpipqqs 7314 ordpipqqs 7315 addclnq 7316 mulclnq 7317 addcomnqg 7322 addassnqg 7323 mulassnqg 7325 mulcanenq 7326 distrnqg 7328 recexnq 7331 nqtri3or 7337 ltdcnq 7338 ltsonq 7339 ltanqg 7341 ltmnqg 7342 1lt2nq 7347 ltexnqq 7349 archnqq 7358 addcmpblnq0 7384 mulcmpblnq0 7385 mulcanenq0ec 7386 addclnq0 7392 mulclnq0 7393 nqpnq0nq 7394 nqnq0a 7395 nqnq0m 7396 nq0m0r 7397 distrnq0 7400 addassnq0lemcl 7402 |
Copyright terms: Public domain | W3C validator |