ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclpi Unicode version

Theorem mulclpi 6877
Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
mulclpi  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  e.  N. )

Proof of Theorem mulclpi
StepHypRef Expression
1 mulpiord 6866 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
2 pinn 6858 . . . 4  |-  ( A  e.  N.  ->  A  e.  om )
3 pinn 6858 . . . 4  |-  ( B  e.  N.  ->  B  e.  om )
4 nnmcl 6234 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  .o  B
)  e.  om )
52, 3, 4syl2an 283 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .o  B
)  e.  om )
6 elni2 6863 . . . . . . 7  |-  ( B  e.  N.  <->  ( B  e.  om  /\  (/)  e.  B
) )
76simprbi 269 . . . . . 6  |-  ( B  e.  N.  ->  (/)  e.  B
)
87adantl 271 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
(/)  e.  B )
93adantl 271 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  B  e.  om )
102adantr 270 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  A  e.  om )
11 elni2 6863 . . . . . . . 8  |-  ( A  e.  N.  <->  ( A  e.  om  /\  (/)  e.  A
) )
1211simprbi 269 . . . . . . 7  |-  ( A  e.  N.  ->  (/)  e.  A
)
1312adantr 270 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
(/)  e.  A )
14 nnmordi 6265 . . . . . 6  |-  ( ( ( B  e.  om  /\  A  e.  om )  /\  (/)  e.  A )  ->  ( (/)  e.  B  ->  ( A  .o  (/) )  e.  ( A  .o  B
) ) )
159, 10, 13, 14syl21anc 1173 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( (/)  e.  B  ->  ( A  .o  (/) )  e.  ( A  .o  B
) ) )
168, 15mpd 13 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .o  (/) )  e.  ( A  .o  B
) )
17 ne0i 3292 . . . 4  |-  ( ( A  .o  (/) )  e.  ( A  .o  B
)  ->  ( A  .o  B )  =/=  (/) )
1816, 17syl 14 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .o  B
)  =/=  (/) )
19 elni 6857 . . 3  |-  ( ( A  .o  B )  e.  N.  <->  ( ( A  .o  B )  e. 
om  /\  ( A  .o  B )  =/=  (/) ) )
205, 18, 19sylanbrc 408 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .o  B
)  e.  N. )
211, 20eqeltrd 2164 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  e.  N. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1438    =/= wne 2255   (/)c0 3286   omcom 4403  (class class class)co 5644    .o comu 6171   N.cnpi 6821    .N cmi 6823
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3952  ax-sep 3955  ax-nul 3963  ax-pow 4007  ax-pr 4034  ax-un 4258  ax-setind 4351  ax-iinf 4401
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-int 3687  df-iun 3730  df-br 3844  df-opab 3898  df-mpt 3899  df-tr 3935  df-id 4118  df-iord 4191  df-on 4193  df-suc 4196  df-iom 4404  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-rn 4447  df-res 4448  df-ima 4449  df-iota 4975  df-fun 5012  df-fn 5013  df-f 5014  df-f1 5015  df-fo 5016  df-f1o 5017  df-fv 5018  df-ov 5647  df-oprab 5648  df-mpt2 5649  df-1st 5903  df-2nd 5904  df-recs 6062  df-irdg 6127  df-oadd 6177  df-omul 6178  df-ni 6853  df-mi 6855
This theorem is referenced by:  mulasspig  6881  distrpig  6882  ltmpig  6888  enqer  6907  enqdc  6910  addcmpblnq  6916  mulcmpblnq  6917  addpipqqslem  6918  mulpipq2  6920  mulpipqqs  6922  ordpipqqs  6923  addclnq  6924  mulclnq  6925  addcomnqg  6930  addassnqg  6931  mulassnqg  6933  mulcanenq  6934  distrnqg  6936  recexnq  6939  nqtri3or  6945  ltdcnq  6946  ltsonq  6947  ltanqg  6949  ltmnqg  6950  1lt2nq  6955  ltexnqq  6957  archnqq  6966  addcmpblnq0  6992  mulcmpblnq0  6993  mulcanenq0ec  6994  addclnq0  7000  mulclnq0  7001  nqpnq0nq  7002  nqnq0a  7003  nqnq0m  7004  nq0m0r  7005  distrnq0  7008  addassnq0lemcl  7010
  Copyright terms: Public domain W3C validator