| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulclpi | Unicode version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| mulclpi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulpiord 7500 |
. 2
| |
| 2 | pinn 7492 |
. . . 4
| |
| 3 | pinn 7492 |
. . . 4
| |
| 4 | nnmcl 6625 |
. . . 4
| |
| 5 | 2, 3, 4 | syl2an 289 |
. . 3
|
| 6 | elni2 7497 |
. . . . . . 7
| |
| 7 | 6 | simprbi 275 |
. . . . . 6
|
| 8 | 7 | adantl 277 |
. . . . 5
|
| 9 | 3 | adantl 277 |
. . . . . 6
|
| 10 | 2 | adantr 276 |
. . . . . 6
|
| 11 | elni2 7497 |
. . . . . . . 8
| |
| 12 | 11 | simprbi 275 |
. . . . . . 7
|
| 13 | 12 | adantr 276 |
. . . . . 6
|
| 14 | nnmordi 6660 |
. . . . . 6
| |
| 15 | 9, 10, 13, 14 | syl21anc 1270 |
. . . . 5
|
| 16 | 8, 15 | mpd 13 |
. . . 4
|
| 17 | ne0i 3498 |
. . . 4
| |
| 18 | 16, 17 | syl 14 |
. . 3
|
| 19 | elni 7491 |
. . 3
| |
| 20 | 5, 18, 19 | sylanbrc 417 |
. 2
|
| 21 | 1, 20 | eqeltrd 2306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-oadd 6564 df-omul 6565 df-ni 7487 df-mi 7489 |
| This theorem is referenced by: mulasspig 7515 distrpig 7516 ltmpig 7522 enqer 7541 enqdc 7544 addcmpblnq 7550 mulcmpblnq 7551 addpipqqslem 7552 mulpipq2 7554 mulpipqqs 7556 ordpipqqs 7557 addclnq 7558 mulclnq 7559 addcomnqg 7564 addassnqg 7565 mulassnqg 7567 mulcanenq 7568 distrnqg 7570 recexnq 7573 nqtri3or 7579 ltdcnq 7580 ltsonq 7581 ltanqg 7583 ltmnqg 7584 1lt2nq 7589 ltexnqq 7591 archnqq 7600 addcmpblnq0 7626 mulcmpblnq0 7627 mulcanenq0ec 7628 addclnq0 7634 mulclnq0 7635 nqpnq0nq 7636 nqnq0a 7637 nqnq0m 7638 nq0m0r 7639 distrnq0 7642 addassnq0lemcl 7644 |
| Copyright terms: Public domain | W3C validator |