Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulclpi | Unicode version |
Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
mulclpi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulpiord 7279 | . 2 | |
2 | pinn 7271 | . . . 4 | |
3 | pinn 7271 | . . . 4 | |
4 | nnmcl 6460 | . . . 4 | |
5 | 2, 3, 4 | syl2an 287 | . . 3 |
6 | elni2 7276 | . . . . . . 7 | |
7 | 6 | simprbi 273 | . . . . . 6 |
8 | 7 | adantl 275 | . . . . 5 |
9 | 3 | adantl 275 | . . . . . 6 |
10 | 2 | adantr 274 | . . . . . 6 |
11 | elni2 7276 | . . . . . . . 8 | |
12 | 11 | simprbi 273 | . . . . . . 7 |
13 | 12 | adantr 274 | . . . . . 6 |
14 | nnmordi 6495 | . . . . . 6 | |
15 | 9, 10, 13, 14 | syl21anc 1232 | . . . . 5 |
16 | 8, 15 | mpd 13 | . . . 4 |
17 | ne0i 3421 | . . . 4 | |
18 | 16, 17 | syl 14 | . . 3 |
19 | elni 7270 | . . 3 | |
20 | 5, 18, 19 | sylanbrc 415 | . 2 |
21 | 1, 20 | eqeltrd 2247 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 wne 2340 c0 3414 com 4574 (class class class)co 5853 comu 6393 cnpi 7234 cmi 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-ni 7266 df-mi 7268 |
This theorem is referenced by: mulasspig 7294 distrpig 7295 ltmpig 7301 enqer 7320 enqdc 7323 addcmpblnq 7329 mulcmpblnq 7330 addpipqqslem 7331 mulpipq2 7333 mulpipqqs 7335 ordpipqqs 7336 addclnq 7337 mulclnq 7338 addcomnqg 7343 addassnqg 7344 mulassnqg 7346 mulcanenq 7347 distrnqg 7349 recexnq 7352 nqtri3or 7358 ltdcnq 7359 ltsonq 7360 ltanqg 7362 ltmnqg 7363 1lt2nq 7368 ltexnqq 7370 archnqq 7379 addcmpblnq0 7405 mulcmpblnq0 7406 mulcanenq0ec 7407 addclnq0 7413 mulclnq0 7414 nqpnq0nq 7415 nqnq0a 7416 nqnq0m 7417 nq0m0r 7418 distrnq0 7421 addassnq0lemcl 7423 |
Copyright terms: Public domain | W3C validator |