| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulclpi | Unicode version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) | 
| Ref | Expression | 
|---|---|
| mulclpi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mulpiord 7384 | 
. 2
 | |
| 2 | pinn 7376 | 
. . . 4
 | |
| 3 | pinn 7376 | 
. . . 4
 | |
| 4 | nnmcl 6539 | 
. . . 4
 | |
| 5 | 2, 3, 4 | syl2an 289 | 
. . 3
 | 
| 6 | elni2 7381 | 
. . . . . . 7
 | |
| 7 | 6 | simprbi 275 | 
. . . . . 6
 | 
| 8 | 7 | adantl 277 | 
. . . . 5
 | 
| 9 | 3 | adantl 277 | 
. . . . . 6
 | 
| 10 | 2 | adantr 276 | 
. . . . . 6
 | 
| 11 | elni2 7381 | 
. . . . . . . 8
 | |
| 12 | 11 | simprbi 275 | 
. . . . . . 7
 | 
| 13 | 12 | adantr 276 | 
. . . . . 6
 | 
| 14 | nnmordi 6574 | 
. . . . . 6
 | |
| 15 | 9, 10, 13, 14 | syl21anc 1248 | 
. . . . 5
 | 
| 16 | 8, 15 | mpd 13 | 
. . . 4
 | 
| 17 | ne0i 3457 | 
. . . 4
 | |
| 18 | 16, 17 | syl 14 | 
. . 3
 | 
| 19 | elni 7375 | 
. . 3
 | |
| 20 | 5, 18, 19 | sylanbrc 417 | 
. 2
 | 
| 21 | 1, 20 | eqeltrd 2273 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-omul 6479 df-ni 7371 df-mi 7373 | 
| This theorem is referenced by: mulasspig 7399 distrpig 7400 ltmpig 7406 enqer 7425 enqdc 7428 addcmpblnq 7434 mulcmpblnq 7435 addpipqqslem 7436 mulpipq2 7438 mulpipqqs 7440 ordpipqqs 7441 addclnq 7442 mulclnq 7443 addcomnqg 7448 addassnqg 7449 mulassnqg 7451 mulcanenq 7452 distrnqg 7454 recexnq 7457 nqtri3or 7463 ltdcnq 7464 ltsonq 7465 ltanqg 7467 ltmnqg 7468 1lt2nq 7473 ltexnqq 7475 archnqq 7484 addcmpblnq0 7510 mulcmpblnq0 7511 mulcanenq0ec 7512 addclnq0 7518 mulclnq0 7519 nqpnq0nq 7520 nqnq0a 7521 nqnq0m 7522 nq0m0r 7523 distrnq0 7526 addassnq0lemcl 7528 | 
| Copyright terms: Public domain | W3C validator |