| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pinn | Unicode version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| pinn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 7419 |
. . 3
| |
| 2 | difss 3299 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3225 |
. 2
|
| 4 | 3 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-ni 7419 |
| This theorem is referenced by: pion 7425 piord 7426 elni2 7429 mulidpi 7433 ltsopi 7435 pitric 7436 pitri3or 7437 ltdcpi 7438 addclpi 7442 mulclpi 7443 addcompig 7444 addasspig 7445 mulcompig 7446 mulasspig 7447 distrpig 7448 addcanpig 7449 mulcanpig 7450 addnidpig 7451 ltexpi 7452 ltapig 7453 ltmpig 7454 nnppipi 7458 enqdc 7476 archnqq 7532 prarloclemarch2 7534 enq0enq 7546 enq0sym 7547 enq0ref 7548 enq0tr 7549 nqnq0pi 7553 nqnq0 7556 addcmpblnq0 7558 mulcmpblnq0 7559 mulcanenq0ec 7560 addclnq0 7566 nqpnq0nq 7568 nqnq0a 7569 nqnq0m 7570 nq0m0r 7571 nq0a0 7572 nnanq0 7573 distrnq0 7574 mulcomnq0 7575 addassnq0lemcl 7576 addassnq0 7577 nq02m 7580 prarloclemlt 7608 prarloclemn 7614 |
| Copyright terms: Public domain | W3C validator |