| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pinn | Unicode version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| pinn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 7417 |
. . 3
| |
| 2 | difss 3299 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3225 |
. 2
|
| 4 | 3 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-ni 7417 |
| This theorem is referenced by: pion 7423 piord 7424 elni2 7427 mulidpi 7431 ltsopi 7433 pitric 7434 pitri3or 7435 ltdcpi 7436 addclpi 7440 mulclpi 7441 addcompig 7442 addasspig 7443 mulcompig 7444 mulasspig 7445 distrpig 7446 addcanpig 7447 mulcanpig 7448 addnidpig 7449 ltexpi 7450 ltapig 7451 ltmpig 7452 nnppipi 7456 enqdc 7474 archnqq 7530 prarloclemarch2 7532 enq0enq 7544 enq0sym 7545 enq0ref 7546 enq0tr 7547 nqnq0pi 7551 nqnq0 7554 addcmpblnq0 7556 mulcmpblnq0 7557 mulcanenq0ec 7558 addclnq0 7564 nqpnq0nq 7566 nqnq0a 7567 nqnq0m 7568 nq0m0r 7569 nq0a0 7570 nnanq0 7571 distrnq0 7572 mulcomnq0 7573 addassnq0lemcl 7574 addassnq0 7575 nq02m 7578 prarloclemlt 7606 prarloclemn 7612 |
| Copyright terms: Public domain | W3C validator |