| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pinn | Unicode version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| pinn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 7452 |
. . 3
| |
| 2 | difss 3307 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3233 |
. 2
|
| 4 | 3 | sseli 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-ni 7452 |
| This theorem is referenced by: pion 7458 piord 7459 elni2 7462 mulidpi 7466 ltsopi 7468 pitric 7469 pitri3or 7470 ltdcpi 7471 addclpi 7475 mulclpi 7476 addcompig 7477 addasspig 7478 mulcompig 7479 mulasspig 7480 distrpig 7481 addcanpig 7482 mulcanpig 7483 addnidpig 7484 ltexpi 7485 ltapig 7486 ltmpig 7487 nnppipi 7491 enqdc 7509 archnqq 7565 prarloclemarch2 7567 enq0enq 7579 enq0sym 7580 enq0ref 7581 enq0tr 7582 nqnq0pi 7586 nqnq0 7589 addcmpblnq0 7591 mulcmpblnq0 7592 mulcanenq0ec 7593 addclnq0 7599 nqpnq0nq 7601 nqnq0a 7602 nqnq0m 7603 nq0m0r 7604 nq0a0 7605 nnanq0 7606 distrnq0 7607 mulcomnq0 7608 addassnq0lemcl 7609 addassnq0 7610 nq02m 7613 prarloclemlt 7641 prarloclemn 7647 |
| Copyright terms: Public domain | W3C validator |