| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pinn | Unicode version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| pinn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ni 7371 | 
. . 3
 | |
| 2 | difss 3289 | 
. . 3
 | |
| 3 | 1, 2 | eqsstri 3215 | 
. 2
 | 
| 4 | 3 | sseli 3179 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-ni 7371 | 
| This theorem is referenced by: pion 7377 piord 7378 elni2 7381 mulidpi 7385 ltsopi 7387 pitric 7388 pitri3or 7389 ltdcpi 7390 addclpi 7394 mulclpi 7395 addcompig 7396 addasspig 7397 mulcompig 7398 mulasspig 7399 distrpig 7400 addcanpig 7401 mulcanpig 7402 addnidpig 7403 ltexpi 7404 ltapig 7405 ltmpig 7406 nnppipi 7410 enqdc 7428 archnqq 7484 prarloclemarch2 7486 enq0enq 7498 enq0sym 7499 enq0ref 7500 enq0tr 7501 nqnq0pi 7505 nqnq0 7508 addcmpblnq0 7510 mulcmpblnq0 7511 mulcanenq0ec 7512 addclnq0 7518 nqpnq0nq 7520 nqnq0a 7521 nqnq0m 7522 nq0m0r 7523 nq0a0 7524 nnanq0 7525 distrnq0 7526 mulcomnq0 7527 addassnq0lemcl 7528 addassnq0 7529 nq02m 7532 prarloclemlt 7560 prarloclemn 7566 | 
| Copyright terms: Public domain | W3C validator |