| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pinn | Unicode version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| pinn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 7491 |
. . 3
| |
| 2 | difss 3330 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3256 |
. 2
|
| 4 | 3 | sseli 3220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-ni 7491 |
| This theorem is referenced by: pion 7497 piord 7498 elni2 7501 mulidpi 7505 ltsopi 7507 pitric 7508 pitri3or 7509 ltdcpi 7510 addclpi 7514 mulclpi 7515 addcompig 7516 addasspig 7517 mulcompig 7518 mulasspig 7519 distrpig 7520 addcanpig 7521 mulcanpig 7522 addnidpig 7523 ltexpi 7524 ltapig 7525 ltmpig 7526 nnppipi 7530 enqdc 7548 archnqq 7604 prarloclemarch2 7606 enq0enq 7618 enq0sym 7619 enq0ref 7620 enq0tr 7621 nqnq0pi 7625 nqnq0 7628 addcmpblnq0 7630 mulcmpblnq0 7631 mulcanenq0ec 7632 addclnq0 7638 nqpnq0nq 7640 nqnq0a 7641 nqnq0m 7642 nq0m0r 7643 nq0a0 7644 nnanq0 7645 distrnq0 7646 mulcomnq0 7647 addassnq0lemcl 7648 addassnq0 7649 nq02m 7652 prarloclemlt 7680 prarloclemn 7686 |
| Copyright terms: Public domain | W3C validator |