| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pinn | Unicode version | ||
| Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
| Ref | Expression |
|---|---|
| pinn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 7388 |
. . 3
| |
| 2 | difss 3290 |
. . 3
| |
| 3 | 1, 2 | eqsstri 3216 |
. 2
|
| 4 | 3 | sseli 3180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-ni 7388 |
| This theorem is referenced by: pion 7394 piord 7395 elni2 7398 mulidpi 7402 ltsopi 7404 pitric 7405 pitri3or 7406 ltdcpi 7407 addclpi 7411 mulclpi 7412 addcompig 7413 addasspig 7414 mulcompig 7415 mulasspig 7416 distrpig 7417 addcanpig 7418 mulcanpig 7419 addnidpig 7420 ltexpi 7421 ltapig 7422 ltmpig 7423 nnppipi 7427 enqdc 7445 archnqq 7501 prarloclemarch2 7503 enq0enq 7515 enq0sym 7516 enq0ref 7517 enq0tr 7518 nqnq0pi 7522 nqnq0 7525 addcmpblnq0 7527 mulcmpblnq0 7528 mulcanenq0ec 7529 addclnq0 7535 nqpnq0nq 7537 nqnq0a 7538 nqnq0m 7539 nq0m0r 7540 nq0a0 7541 nnanq0 7542 distrnq0 7543 mulcomnq0 7544 addassnq0lemcl 7545 addassnq0 7546 nq02m 7549 prarloclemlt 7577 prarloclemn 7583 |
| Copyright terms: Public domain | W3C validator |