Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pinn | Unicode version |
Description: A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) |
Ref | Expression |
---|---|
pinn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 7245 | . . 3 | |
2 | difss 3248 | . . 3 | |
3 | 1, 2 | eqsstri 3174 | . 2 |
4 | 3 | sseli 3138 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cdif 3113 c0 3409 csn 3576 com 4567 cnpi 7213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-ni 7245 |
This theorem is referenced by: pion 7251 piord 7252 elni2 7255 mulidpi 7259 ltsopi 7261 pitric 7262 pitri3or 7263 ltdcpi 7264 addclpi 7268 mulclpi 7269 addcompig 7270 addasspig 7271 mulcompig 7272 mulasspig 7273 distrpig 7274 addcanpig 7275 mulcanpig 7276 addnidpig 7277 ltexpi 7278 ltapig 7279 ltmpig 7280 nnppipi 7284 enqdc 7302 archnqq 7358 prarloclemarch2 7360 enq0enq 7372 enq0sym 7373 enq0ref 7374 enq0tr 7375 nqnq0pi 7379 nqnq0 7382 addcmpblnq0 7384 mulcmpblnq0 7385 mulcanenq0ec 7386 addclnq0 7392 nqpnq0nq 7394 nqnq0a 7395 nqnq0m 7396 nq0m0r 7397 nq0a0 7398 nnanq0 7399 distrnq0 7400 mulcomnq0 7401 addassnq0lemcl 7402 addassnq0 7403 nq02m 7406 prarloclemlt 7434 prarloclemn 7440 |
Copyright terms: Public domain | W3C validator |