![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elon | Unicode version |
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
elon.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elon |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elon.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | elong 4367 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-in 3133 df-ss 3140 df-uni 3806 df-tr 4097 df-iord 4360 df-on 4362 |
This theorem is referenced by: tron 4376 0elon 4386 ordtriexmidlem 4512 ontr2exmid 4518 ordtri2or2exmidlem 4519 onsucelsucexmidlem 4522 exmidonfinlem 7182 bj-omelon 14253 |
Copyright terms: Public domain | W3C validator |