ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elon Unicode version

Theorem elon 4352
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Hypothesis
Ref Expression
elon.1  |-  A  e. 
_V
Assertion
Ref Expression
elon  |-  ( A  e.  On  <->  Ord  A )

Proof of Theorem elon
StepHypRef Expression
1 elon.1 . 2  |-  A  e. 
_V
2 elong 4351 . 2  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  A ) )
31, 2ax-mp 5 1  |-  ( A  e.  On  <->  Ord  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    e. wcel 2136   _Vcvv 2726   Ord word 4340   Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346
This theorem is referenced by:  tron  4360  0elon  4370  ordtriexmidlem  4496  ontr2exmid  4502  ordtri2or2exmidlem  4503  onsucelsucexmidlem  4506  exmidonfinlem  7149  bj-omelon  13843
  Copyright terms: Public domain W3C validator