Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omelon Unicode version

Theorem bj-omelon 14984
Description: The set  om is an ordinal. Constructive proof of omelon 4620. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-omelon  |-  om  e.  On

Proof of Theorem bj-omelon
StepHypRef Expression
1 bj-omord 14983 . 2  |-  Ord  om
2 bj-omex 14965 . . 3  |-  om  e.  _V
32elon 4386 . 2  |-  ( om  e.  On  <->  Ord  om )
41, 3mpbir 146 1  |-  om  e.  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2158   Ord word 4374   Oncon0 4375   omcom 4601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-nul 4141  ax-pr 4221  ax-un 4445  ax-bd0 14836  ax-bdor 14839  ax-bdal 14841  ax-bdex 14842  ax-bdeq 14843  ax-bdel 14844  ax-bdsb 14845  ax-bdsep 14907  ax-infvn 14964
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-sn 3610  df-pr 3611  df-uni 3822  df-int 3857  df-tr 4114  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-bdc 14864  df-bj-ind 14950
This theorem is referenced by:  bj-omssonALT  14986
  Copyright terms: Public domain W3C validator