| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tron | Unicode version | ||
| Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.) |
| Ref | Expression |
|---|---|
| tron |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 4154 |
. 2
| |
| 2 | vex 2776 |
. . . . . . 7
| |
| 3 | 2 | elon 4429 |
. . . . . 6
|
| 4 | ordelord 4436 |
. . . . . 6
| |
| 5 | 3, 4 | sylanb 284 |
. . . . 5
|
| 6 | 5 | ex 115 |
. . . 4
|
| 7 | vex 2776 |
. . . . 5
| |
| 8 | 7 | elon 4429 |
. . . 4
|
| 9 | 6, 8 | imbitrrdi 162 |
. . 3
|
| 10 | 9 | ssrdv 3203 |
. 2
|
| 11 | 1, 10 | mprgbir 2565 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3176 df-ss 3183 df-uni 3857 df-tr 4151 df-iord 4421 df-on 4423 |
| This theorem is referenced by: ordon 4542 tfi 4638 |
| Copyright terms: Public domain | W3C validator |