ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tron Unicode version

Theorem tron 4367
Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
Assertion
Ref Expression
tron  |-  Tr  On

Proof of Theorem tron
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 4091 . 2  |-  ( Tr  On  <->  A. x  e.  On  x  C_  On )
2 vex 2733 . . . . . . 7  |-  x  e. 
_V
32elon 4359 . . . . . 6  |-  ( x  e.  On  <->  Ord  x )
4 ordelord 4366 . . . . . 6  |-  ( ( Ord  x  /\  y  e.  x )  ->  Ord  y )
53, 4sylanb 282 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  x )  ->  Ord  y )
65ex 114 . . . 4  |-  ( x  e.  On  ->  (
y  e.  x  ->  Ord  y ) )
7 vex 2733 . . . . 5  |-  y  e. 
_V
87elon 4359 . . . 4  |-  ( y  e.  On  <->  Ord  y )
96, 8syl6ibr 161 . . 3  |-  ( x  e.  On  ->  (
y  e.  x  -> 
y  e.  On ) )
109ssrdv 3153 . 2  |-  ( x  e.  On  ->  x  C_  On )
111, 10mprgbir 2528 1  |-  Tr  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2141    C_ wss 3121   Tr wtr 4087   Ord word 4347   Oncon0 4348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353
This theorem is referenced by:  ordon  4470  tfi  4566
  Copyright terms: Public domain W3C validator