ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tron Unicode version

Theorem tron 4427
Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
Assertion
Ref Expression
tron  |-  Tr  On

Proof of Theorem tron
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 4145 . 2  |-  ( Tr  On  <->  A. x  e.  On  x  C_  On )
2 vex 2774 . . . . . . 7  |-  x  e. 
_V
32elon 4419 . . . . . 6  |-  ( x  e.  On  <->  Ord  x )
4 ordelord 4426 . . . . . 6  |-  ( ( Ord  x  /\  y  e.  x )  ->  Ord  y )
53, 4sylanb 284 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  x )  ->  Ord  y )
65ex 115 . . . 4  |-  ( x  e.  On  ->  (
y  e.  x  ->  Ord  y ) )
7 vex 2774 . . . . 5  |-  y  e. 
_V
87elon 4419 . . . 4  |-  ( y  e.  On  <->  Ord  y )
96, 8imbitrrdi 162 . . 3  |-  ( x  e.  On  ->  (
y  e.  x  -> 
y  e.  On ) )
109ssrdv 3198 . 2  |-  ( x  e.  On  ->  x  C_  On )
111, 10mprgbir 2563 1  |-  Tr  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2175    C_ wss 3165   Tr wtr 4141   Ord word 4407   Oncon0 4408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-in 3171  df-ss 3178  df-uni 3850  df-tr 4142  df-iord 4411  df-on 4413
This theorem is referenced by:  ordon  4532  tfi  4628
  Copyright terms: Public domain W3C validator