ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tron Unicode version

Theorem tron 4360
Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
Assertion
Ref Expression
tron  |-  Tr  On

Proof of Theorem tron
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 4084 . 2  |-  ( Tr  On  <->  A. x  e.  On  x  C_  On )
2 vex 2729 . . . . . . 7  |-  x  e. 
_V
32elon 4352 . . . . . 6  |-  ( x  e.  On  <->  Ord  x )
4 ordelord 4359 . . . . . 6  |-  ( ( Ord  x  /\  y  e.  x )  ->  Ord  y )
53, 4sylanb 282 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  x )  ->  Ord  y )
65ex 114 . . . 4  |-  ( x  e.  On  ->  (
y  e.  x  ->  Ord  y ) )
7 vex 2729 . . . . 5  |-  y  e. 
_V
87elon 4352 . . . 4  |-  ( y  e.  On  <->  Ord  y )
96, 8syl6ibr 161 . . 3  |-  ( x  e.  On  ->  (
y  e.  x  -> 
y  e.  On ) )
109ssrdv 3148 . 2  |-  ( x  e.  On  ->  x  C_  On )
111, 10mprgbir 2524 1  |-  Tr  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2136    C_ wss 3116   Tr wtr 4080   Ord word 4340   Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346
This theorem is referenced by:  ordon  4463  tfi  4559
  Copyright terms: Public domain W3C validator