ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tron Unicode version

Theorem tron 4384
Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
Assertion
Ref Expression
tron  |-  Tr  On

Proof of Theorem tron
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 4107 . 2  |-  ( Tr  On  <->  A. x  e.  On  x  C_  On )
2 vex 2742 . . . . . . 7  |-  x  e. 
_V
32elon 4376 . . . . . 6  |-  ( x  e.  On  <->  Ord  x )
4 ordelord 4383 . . . . . 6  |-  ( ( Ord  x  /\  y  e.  x )  ->  Ord  y )
53, 4sylanb 284 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  x )  ->  Ord  y )
65ex 115 . . . 4  |-  ( x  e.  On  ->  (
y  e.  x  ->  Ord  y ) )
7 vex 2742 . . . . 5  |-  y  e. 
_V
87elon 4376 . . . 4  |-  ( y  e.  On  <->  Ord  y )
96, 8imbitrrdi 162 . . 3  |-  ( x  e.  On  ->  (
y  e.  x  -> 
y  e.  On ) )
109ssrdv 3163 . 2  |-  ( x  e.  On  ->  x  C_  On )
111, 10mprgbir 2535 1  |-  Tr  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2148    C_ wss 3131   Tr wtr 4103   Ord word 4364   Oncon0 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812  df-tr 4104  df-iord 4368  df-on 4370
This theorem is referenced by:  ordon  4487  tfi  4583
  Copyright terms: Public domain W3C validator