Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucelsucexmidlem | Unicode version |
Description: Lemma for onsucelsucexmid 4514. The set appears as in the proof of Theorem 1.3 in [Bauer] p. 483 (see acexmidlema 5844), and similar sets also appear in other proofs that various propositions imply excluded middle, for example in ordtriexmidlem 4503. (Contributed by Jim Kingdon, 2-Aug-2019.) |
Ref | Expression |
---|---|
onsucelsucexmidlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 524 | . . . . . . . 8 | |
2 | noel 3418 | . . . . . . . . . 10 | |
3 | eleq2 2234 | . . . . . . . . . 10 | |
4 | 2, 3 | mtbiri 670 | . . . . . . . . 9 |
5 | 4 | adantl 275 | . . . . . . . 8 |
6 | 1, 5 | pm2.21dd 615 | . . . . . . 7 |
7 | 6 | ex 114 | . . . . . 6 |
8 | eleq2 2234 | . . . . . . . . . . 11 | |
9 | 8 | biimpac 296 | . . . . . . . . . 10 |
10 | velsn 3600 | . . . . . . . . . 10 | |
11 | 9, 10 | sylib 121 | . . . . . . . . 9 |
12 | onsucelsucexmidlem1 4512 | . . . . . . . . 9 | |
13 | 11, 12 | eqeltrdi 2261 | . . . . . . . 8 |
14 | 13 | ex 114 | . . . . . . 7 |
15 | 14 | adantr 274 | . . . . . 6 |
16 | elrabi 2883 | . . . . . . . 8 | |
17 | vex 2733 | . . . . . . . . 9 | |
18 | 17 | elpr 3604 | . . . . . . . 8 |
19 | 16, 18 | sylib 121 | . . . . . . 7 |
20 | 19 | adantl 275 | . . . . . 6 |
21 | 7, 15, 20 | mpjaod 713 | . . . . 5 |
22 | 21 | gen2 1443 | . . . 4 |
23 | dftr2 4089 | . . . 4 | |
24 | 22, 23 | mpbir 145 | . . 3 |
25 | ssrab2 3232 | . . 3 | |
26 | 2ordpr 4508 | . . 3 | |
27 | trssord 4365 | . . 3 | |
28 | 24, 25, 26, 27 | mp3an 1332 | . 2 |
29 | pp0ex 4175 | . . . 4 | |
30 | 29 | rabex 4133 | . . 3 |
31 | 30 | elon 4359 | . 2 |
32 | 28, 31 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 wal 1346 wceq 1348 wcel 2141 crab 2452 wss 3121 c0 3414 csn 3583 cpr 3584 wtr 4087 word 4347 con0 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 |
This theorem is referenced by: onsucelsucexmid 4514 acexmidlemcase 5848 acexmidlemv 5851 |
Copyright terms: Public domain | W3C validator |