| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucelsucexmidlem | Unicode version | ||
| Description: Lemma for onsucelsucexmid 4596. The set
|
| Ref | Expression |
|---|---|
| onsucelsucexmidlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . . . . 8
| |
| 2 | noel 3472 |
. . . . . . . . . 10
| |
| 3 | eleq2 2271 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | mtbiri 677 |
. . . . . . . . 9
|
| 5 | 4 | adantl 277 |
. . . . . . . 8
|
| 6 | 1, 5 | pm2.21dd 621 |
. . . . . . 7
|
| 7 | 6 | ex 115 |
. . . . . 6
|
| 8 | eleq2 2271 |
. . . . . . . . . . 11
| |
| 9 | 8 | biimpac 298 |
. . . . . . . . . 10
|
| 10 | velsn 3660 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | sylib 122 |
. . . . . . . . 9
|
| 12 | onsucelsucexmidlem1 4594 |
. . . . . . . . 9
| |
| 13 | 11, 12 | eqeltrdi 2298 |
. . . . . . . 8
|
| 14 | 13 | ex 115 |
. . . . . . 7
|
| 15 | 14 | adantr 276 |
. . . . . 6
|
| 16 | elrabi 2933 |
. . . . . . . 8
| |
| 17 | vex 2779 |
. . . . . . . . 9
| |
| 18 | 17 | elpr 3664 |
. . . . . . . 8
|
| 19 | 16, 18 | sylib 122 |
. . . . . . 7
|
| 20 | 19 | adantl 277 |
. . . . . 6
|
| 21 | 7, 15, 20 | mpjaod 720 |
. . . . 5
|
| 22 | 21 | gen2 1474 |
. . . 4
|
| 23 | dftr2 4160 |
. . . 4
| |
| 24 | 22, 23 | mpbir 146 |
. . 3
|
| 25 | ssrab2 3286 |
. . 3
| |
| 26 | 2ordpr 4590 |
. . 3
| |
| 27 | trssord 4445 |
. . 3
| |
| 28 | 24, 25, 26, 27 | mp3an 1350 |
. 2
|
| 29 | pp0ex 4249 |
. . . 4
| |
| 30 | 29 | rabex 4204 |
. . 3
|
| 31 | 30 | elon 4439 |
. 2
|
| 32 | 28, 31 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 |
| This theorem is referenced by: onsucelsucexmid 4596 acexmidlemcase 5962 acexmidlemv 5965 |
| Copyright terms: Public domain | W3C validator |