Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucelsucexmidlem | Unicode version |
Description: Lemma for onsucelsucexmid 4507. The set appears as in the proof of Theorem 1.3 in [Bauer] p. 483 (see acexmidlema 5833), and similar sets also appear in other proofs that various propositions imply excluded middle, for example in ordtriexmidlem 4496. (Contributed by Jim Kingdon, 2-Aug-2019.) |
Ref | Expression |
---|---|
onsucelsucexmidlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . . . . . . 8 | |
2 | noel 3413 | . . . . . . . . . 10 | |
3 | eleq2 2230 | . . . . . . . . . 10 | |
4 | 2, 3 | mtbiri 665 | . . . . . . . . 9 |
5 | 4 | adantl 275 | . . . . . . . 8 |
6 | 1, 5 | pm2.21dd 610 | . . . . . . 7 |
7 | 6 | ex 114 | . . . . . 6 |
8 | eleq2 2230 | . . . . . . . . . . 11 | |
9 | 8 | biimpac 296 | . . . . . . . . . 10 |
10 | velsn 3593 | . . . . . . . . . 10 | |
11 | 9, 10 | sylib 121 | . . . . . . . . 9 |
12 | onsucelsucexmidlem1 4505 | . . . . . . . . 9 | |
13 | 11, 12 | eqeltrdi 2257 | . . . . . . . 8 |
14 | 13 | ex 114 | . . . . . . 7 |
15 | 14 | adantr 274 | . . . . . 6 |
16 | elrabi 2879 | . . . . . . . 8 | |
17 | vex 2729 | . . . . . . . . 9 | |
18 | 17 | elpr 3597 | . . . . . . . 8 |
19 | 16, 18 | sylib 121 | . . . . . . 7 |
20 | 19 | adantl 275 | . . . . . 6 |
21 | 7, 15, 20 | mpjaod 708 | . . . . 5 |
22 | 21 | gen2 1438 | . . . 4 |
23 | dftr2 4082 | . . . 4 | |
24 | 22, 23 | mpbir 145 | . . 3 |
25 | ssrab2 3227 | . . 3 | |
26 | 2ordpr 4501 | . . 3 | |
27 | trssord 4358 | . . 3 | |
28 | 24, 25, 26, 27 | mp3an 1327 | . 2 |
29 | pp0ex 4168 | . . . 4 | |
30 | 29 | rabex 4126 | . . 3 |
31 | 30 | elon 4352 | . 2 |
32 | 28, 31 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wal 1341 wceq 1343 wcel 2136 crab 2448 wss 3116 c0 3409 csn 3576 cpr 3577 wtr 4080 word 4340 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: onsucelsucexmid 4507 acexmidlemcase 5837 acexmidlemv 5840 |
Copyright terms: Public domain | W3C validator |