| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucelsucexmidlem | Unicode version | ||
| Description: Lemma for onsucelsucexmid 4621. The set
|
| Ref | Expression |
|---|---|
| onsucelsucexmidlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . . . . 8
| |
| 2 | noel 3495 |
. . . . . . . . . 10
| |
| 3 | eleq2 2293 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | mtbiri 679 |
. . . . . . . . 9
|
| 5 | 4 | adantl 277 |
. . . . . . . 8
|
| 6 | 1, 5 | pm2.21dd 623 |
. . . . . . 7
|
| 7 | 6 | ex 115 |
. . . . . 6
|
| 8 | eleq2 2293 |
. . . . . . . . . . 11
| |
| 9 | 8 | biimpac 298 |
. . . . . . . . . 10
|
| 10 | velsn 3683 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | sylib 122 |
. . . . . . . . 9
|
| 12 | onsucelsucexmidlem1 4619 |
. . . . . . . . 9
| |
| 13 | 11, 12 | eqeltrdi 2320 |
. . . . . . . 8
|
| 14 | 13 | ex 115 |
. . . . . . 7
|
| 15 | 14 | adantr 276 |
. . . . . 6
|
| 16 | elrabi 2956 |
. . . . . . . 8
| |
| 17 | vex 2802 |
. . . . . . . . 9
| |
| 18 | 17 | elpr 3687 |
. . . . . . . 8
|
| 19 | 16, 18 | sylib 122 |
. . . . . . 7
|
| 20 | 19 | adantl 277 |
. . . . . 6
|
| 21 | 7, 15, 20 | mpjaod 723 |
. . . . 5
|
| 22 | 21 | gen2 1496 |
. . . 4
|
| 23 | dftr2 4183 |
. . . 4
| |
| 24 | 22, 23 | mpbir 146 |
. . 3
|
| 25 | ssrab2 3309 |
. . 3
| |
| 26 | 2ordpr 4615 |
. . 3
| |
| 27 | trssord 4470 |
. . 3
| |
| 28 | 24, 25, 26, 27 | mp3an 1371 |
. 2
|
| 29 | pp0ex 4272 |
. . . 4
| |
| 30 | 29 | rabex 4227 |
. . 3
|
| 31 | 30 | elon 4464 |
. 2
|
| 32 | 28, 31 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 |
| This theorem is referenced by: onsucelsucexmid 4621 acexmidlemcase 5995 acexmidlemv 5998 |
| Copyright terms: Public domain | W3C validator |