| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > onsucelsucexmidlem | Unicode version | ||
| Description: Lemma for onsucelsucexmid 4566.  The set
        | 
| Ref | Expression | 
|---|---|
| onsucelsucexmidlem | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpll 527 | 
. . . . . . . 8
 | |
| 2 | noel 3454 | 
. . . . . . . . . 10
 | |
| 3 | eleq2 2260 | 
. . . . . . . . . 10
 | |
| 4 | 2, 3 | mtbiri 676 | 
. . . . . . . . 9
 | 
| 5 | 4 | adantl 277 | 
. . . . . . . 8
 | 
| 6 | 1, 5 | pm2.21dd 621 | 
. . . . . . 7
 | 
| 7 | 6 | ex 115 | 
. . . . . 6
 | 
| 8 | eleq2 2260 | 
. . . . . . . . . . 11
 | |
| 9 | 8 | biimpac 298 | 
. . . . . . . . . 10
 | 
| 10 | velsn 3639 | 
. . . . . . . . . 10
 | |
| 11 | 9, 10 | sylib 122 | 
. . . . . . . . 9
 | 
| 12 | onsucelsucexmidlem1 4564 | 
. . . . . . . . 9
 | |
| 13 | 11, 12 | eqeltrdi 2287 | 
. . . . . . . 8
 | 
| 14 | 13 | ex 115 | 
. . . . . . 7
 | 
| 15 | 14 | adantr 276 | 
. . . . . 6
 | 
| 16 | elrabi 2917 | 
. . . . . . . 8
 | |
| 17 | vex 2766 | 
. . . . . . . . 9
 | |
| 18 | 17 | elpr 3643 | 
. . . . . . . 8
 | 
| 19 | 16, 18 | sylib 122 | 
. . . . . . 7
 | 
| 20 | 19 | adantl 277 | 
. . . . . 6
 | 
| 21 | 7, 15, 20 | mpjaod 719 | 
. . . . 5
 | 
| 22 | 21 | gen2 1464 | 
. . . 4
 | 
| 23 | dftr2 4133 | 
. . . 4
 | |
| 24 | 22, 23 | mpbir 146 | 
. . 3
 | 
| 25 | ssrab2 3268 | 
. . 3
 | |
| 26 | 2ordpr 4560 | 
. . 3
 | |
| 27 | trssord 4415 | 
. . 3
 | |
| 28 | 24, 25, 26, 27 | mp3an 1348 | 
. 2
 | 
| 29 | pp0ex 4222 | 
. . . 4
 | |
| 30 | 29 | rabex 4177 | 
. . 3
 | 
| 31 | 30 | elon 4409 | 
. 2
 | 
| 32 | 28, 31 | mpbir 146 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 | 
| This theorem is referenced by: onsucelsucexmid 4566 acexmidlemcase 5917 acexmidlemv 5920 | 
| Copyright terms: Public domain | W3C validator |