ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucelsucexmidlem Unicode version

Theorem onsucelsucexmidlem 4565
Description: Lemma for onsucelsucexmid 4566. The set  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } appears as  A in the proof of Theorem 1.3 in [Bauer] p. 483 (see acexmidlema 5913), and similar sets also appear in other proofs that various propositions imply excluded middle, for example in ordtriexmidlem 4555. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onsucelsucexmidlem  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  e.  On
Distinct variable group:    ph, x

Proof of Theorem onsucelsucexmidlem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . 8  |-  ( ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } )  /\  z  =  (/) )  ->  y  e.  z )
2 noel 3454 . . . . . . . . . 10  |-  -.  y  e.  (/)
3 eleq2 2260 . . . . . . . . . 10  |-  ( z  =  (/)  ->  ( y  e.  z  <->  y  e.  (/) ) )
42, 3mtbiri 676 . . . . . . . . 9  |-  ( z  =  (/)  ->  -.  y  e.  z )
54adantl 277 . . . . . . . 8  |-  ( ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } )  /\  z  =  (/) )  ->  -.  y  e.  z )
61, 5pm2.21dd 621 . . . . . . 7  |-  ( ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } )  /\  z  =  (/) )  ->  y  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } )
76ex 115 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )  ->  (
z  =  (/)  ->  y  e.  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) } ) )
8 eleq2 2260 . . . . . . . . . . 11  |-  ( z  =  { (/) }  ->  ( y  e.  z  <->  y  e.  {
(/) } ) )
98biimpac 298 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  z  =  { (/) } )  ->  y  e.  { (/)
} )
10 velsn 3639 . . . . . . . . . 10  |-  ( y  e.  { (/) }  <->  y  =  (/) )
119, 10sylib 122 . . . . . . . . 9  |-  ( ( y  e.  z  /\  z  =  { (/) } )  ->  y  =  (/) )
12 onsucelsucexmidlem1 4564 . . . . . . . . 9  |-  (/)  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }
1311, 12eqeltrdi 2287 . . . . . . . 8  |-  ( ( y  e.  z  /\  z  =  { (/) } )  ->  y  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } )
1413ex 115 . . . . . . 7  |-  ( y  e.  z  ->  (
z  =  { (/) }  ->  y  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } ) )
1514adantr 276 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )  ->  (
z  =  { (/) }  ->  y  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } ) )
16 elrabi 2917 . . . . . . . 8  |-  ( z  e.  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  ->  z  e.  { (/)
,  { (/) } }
)
17 vex 2766 . . . . . . . . 9  |-  z  e. 
_V
1817elpr 3643 . . . . . . . 8  |-  ( z  e.  { (/) ,  { (/)
} }  <->  ( z  =  (/)  \/  z  =  { (/) } ) )
1916, 18sylib 122 . . . . . . 7  |-  ( z  e.  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  ->  ( z  =  (/)  \/  z  =  { (/)
} ) )
2019adantl 277 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )  ->  (
z  =  (/)  \/  z  =  { (/) } ) )
217, 15, 20mpjaod 719 . . . . 5  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )  ->  y  e.  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )
2221gen2 1464 . . . 4  |-  A. y A. z ( ( y  e.  z  /\  z  e.  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )  ->  y  e.  { x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } )
23 dftr2 4133 . . . 4  |-  ( Tr 
{ x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  <->  A. y A. z ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } )  ->  y  e.  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) } ) )
2422, 23mpbir 146 . . 3  |-  Tr  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }
25 ssrab2 3268 . . 3  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  C_  { (/) ,  { (/)
} }
26 2ordpr 4560 . . 3  |-  Ord  { (/)
,  { (/) } }
27 trssord 4415 . . 3  |-  ( ( Tr  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  /\  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  C_  { (/) ,  { (/)
} }  /\  Ord  {
(/) ,  { (/) } }
)  ->  Ord  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )
2824, 25, 26, 27mp3an 1348 . 2  |-  Ord  {
x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }
29 pp0ex 4222 . . . 4  |-  { (/) ,  { (/) } }  e.  _V
3029rabex 4177 . . 3  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  e.  _V
3130elon 4409 . 2  |-  ( { x  e.  { (/) ,  { (/) } }  | 
( x  =  (/)  \/ 
ph ) }  e.  On 
<->  Ord  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } )
3228, 31mpbir 146 1  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  e.  On
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709   A.wal 1362    = wceq 1364    e. wcel 2167   {crab 2479    C_ wss 3157   (/)c0 3450   {csn 3622   {cpr 3623   Tr wtr 4131   Ord word 4397   Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406
This theorem is referenced by:  onsucelsucexmid  4566  acexmidlemcase  5917  acexmidlemv  5920
  Copyright terms: Public domain W3C validator