| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucelsucexmidlem | Unicode version | ||
| Description: Lemma for onsucelsucexmid 4578. The set
|
| Ref | Expression |
|---|---|
| onsucelsucexmidlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . . . . 8
| |
| 2 | noel 3464 |
. . . . . . . . . 10
| |
| 3 | eleq2 2269 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | mtbiri 677 |
. . . . . . . . 9
|
| 5 | 4 | adantl 277 |
. . . . . . . 8
|
| 6 | 1, 5 | pm2.21dd 621 |
. . . . . . 7
|
| 7 | 6 | ex 115 |
. . . . . 6
|
| 8 | eleq2 2269 |
. . . . . . . . . . 11
| |
| 9 | 8 | biimpac 298 |
. . . . . . . . . 10
|
| 10 | velsn 3650 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | sylib 122 |
. . . . . . . . 9
|
| 12 | onsucelsucexmidlem1 4576 |
. . . . . . . . 9
| |
| 13 | 11, 12 | eqeltrdi 2296 |
. . . . . . . 8
|
| 14 | 13 | ex 115 |
. . . . . . 7
|
| 15 | 14 | adantr 276 |
. . . . . 6
|
| 16 | elrabi 2926 |
. . . . . . . 8
| |
| 17 | vex 2775 |
. . . . . . . . 9
| |
| 18 | 17 | elpr 3654 |
. . . . . . . 8
|
| 19 | 16, 18 | sylib 122 |
. . . . . . 7
|
| 20 | 19 | adantl 277 |
. . . . . 6
|
| 21 | 7, 15, 20 | mpjaod 720 |
. . . . 5
|
| 22 | 21 | gen2 1473 |
. . . 4
|
| 23 | dftr2 4144 |
. . . 4
| |
| 24 | 22, 23 | mpbir 146 |
. . 3
|
| 25 | ssrab2 3278 |
. . 3
| |
| 26 | 2ordpr 4572 |
. . 3
| |
| 27 | trssord 4427 |
. . 3
| |
| 28 | 24, 25, 26, 27 | mp3an 1350 |
. 2
|
| 29 | pp0ex 4233 |
. . . 4
| |
| 30 | 29 | rabex 4188 |
. . 3
|
| 31 | 30 | elon 4421 |
. 2
|
| 32 | 28, 31 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 |
| This theorem is referenced by: onsucelsucexmid 4578 acexmidlemcase 5939 acexmidlemv 5942 |
| Copyright terms: Public domain | W3C validator |