| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ordtri2or2exmidlem | Unicode version | ||
| Description: A set which is  | 
| Ref | Expression | 
|---|---|
| ordtri2or2exmidlem | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpll 527 | 
. . . . . . 7
 | |
| 2 | noel 3454 | 
. . . . . . . . 9
 | |
| 3 | eleq2 2260 | 
. . . . . . . . 9
 | |
| 4 | 2, 3 | mtbiri 676 | 
. . . . . . . 8
 | 
| 5 | 4 | adantl 277 | 
. . . . . . 7
 | 
| 6 | 1, 5 | pm2.21dd 621 | 
. . . . . 6
 | 
| 7 | eleq2 2260 | 
. . . . . . . . . . 11
 | |
| 8 | 7 | biimpac 298 | 
. . . . . . . . . 10
 | 
| 9 | velsn 3639 | 
. . . . . . . . . 10
 | |
| 10 | 8, 9 | sylib 122 | 
. . . . . . . . 9
 | 
| 11 | orc 713 | 
. . . . . . . . . 10
 | |
| 12 | vex 2766 | 
. . . . . . . . . . 11
 | |
| 13 | 12 | elpr 3643 | 
. . . . . . . . . 10
 | 
| 14 | 11, 13 | sylibr 134 | 
. . . . . . . . 9
 | 
| 15 | 10, 14 | syl 14 | 
. . . . . . . 8
 | 
| 16 | 15 | adantlr 477 | 
. . . . . . 7
 | 
| 17 | biidd 172 | 
. . . . . . . . . 10
 | |
| 18 | 17 | elrab 2920 | 
. . . . . . . . 9
 | 
| 19 | 18 | simprbi 275 | 
. . . . . . . 8
 | 
| 20 | 19 | ad2antlr 489 | 
. . . . . . 7
 | 
| 21 | biidd 172 | 
. . . . . . . 8
 | |
| 22 | 21 | elrab 2920 | 
. . . . . . 7
 | 
| 23 | 16, 20, 22 | sylanbrc 417 | 
. . . . . 6
 | 
| 24 | elrabi 2917 | 
. . . . . . . 8
 | |
| 25 | vex 2766 | 
. . . . . . . . 9
 | |
| 26 | 25 | elpr 3643 | 
. . . . . . . 8
 | 
| 27 | 24, 26 | sylib 122 | 
. . . . . . 7
 | 
| 28 | 27 | adantl 277 | 
. . . . . 6
 | 
| 29 | 6, 23, 28 | mpjaodan 799 | 
. . . . 5
 | 
| 30 | 29 | gen2 1464 | 
. . . 4
 | 
| 31 | dftr2 4133 | 
. . . 4
 | |
| 32 | 30, 31 | mpbir 146 | 
. . 3
 | 
| 33 | ssrab2 3268 | 
. . 3
 | |
| 34 | 2ordpr 4560 | 
. . 3
 | |
| 35 | trssord 4415 | 
. . 3
 | |
| 36 | 32, 33, 34, 35 | mp3an 1348 | 
. 2
 | 
| 37 | pp0ex 4222 | 
. . . 4
 | |
| 38 | 37 | rabex 4177 | 
. . 3
 | 
| 39 | 38 | elon 4409 | 
. 2
 | 
| 40 | 36, 39 | mpbir 146 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 | 
| This theorem is referenced by: ordtri2or2exmid 4607 ontri2orexmidim 4608 | 
| Copyright terms: Public domain | W3C validator |