Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtri2or2exmidlem | Unicode version |
Description: A set which is if or if is an ordinal. (Contributed by Jim Kingdon, 29-Aug-2021.) |
Ref | Expression |
---|---|
ordtri2or2exmidlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 524 | . . . . . . 7 | |
2 | noel 3418 | . . . . . . . . 9 | |
3 | eleq2 2234 | . . . . . . . . 9 | |
4 | 2, 3 | mtbiri 670 | . . . . . . . 8 |
5 | 4 | adantl 275 | . . . . . . 7 |
6 | 1, 5 | pm2.21dd 615 | . . . . . 6 |
7 | eleq2 2234 | . . . . . . . . . . 11 | |
8 | 7 | biimpac 296 | . . . . . . . . . 10 |
9 | velsn 3600 | . . . . . . . . . 10 | |
10 | 8, 9 | sylib 121 | . . . . . . . . 9 |
11 | orc 707 | . . . . . . . . . 10 | |
12 | vex 2733 | . . . . . . . . . . 11 | |
13 | 12 | elpr 3604 | . . . . . . . . . 10 |
14 | 11, 13 | sylibr 133 | . . . . . . . . 9 |
15 | 10, 14 | syl 14 | . . . . . . . 8 |
16 | 15 | adantlr 474 | . . . . . . 7 |
17 | biidd 171 | . . . . . . . . . 10 | |
18 | 17 | elrab 2886 | . . . . . . . . 9 |
19 | 18 | simprbi 273 | . . . . . . . 8 |
20 | 19 | ad2antlr 486 | . . . . . . 7 |
21 | biidd 171 | . . . . . . . 8 | |
22 | 21 | elrab 2886 | . . . . . . 7 |
23 | 16, 20, 22 | sylanbrc 415 | . . . . . 6 |
24 | elrabi 2883 | . . . . . . . 8 | |
25 | vex 2733 | . . . . . . . . 9 | |
26 | 25 | elpr 3604 | . . . . . . . 8 |
27 | 24, 26 | sylib 121 | . . . . . . 7 |
28 | 27 | adantl 275 | . . . . . 6 |
29 | 6, 23, 28 | mpjaodan 793 | . . . . 5 |
30 | 29 | gen2 1443 | . . . 4 |
31 | dftr2 4089 | . . . 4 | |
32 | 30, 31 | mpbir 145 | . . 3 |
33 | ssrab2 3232 | . . 3 | |
34 | 2ordpr 4508 | . . 3 | |
35 | trssord 4365 | . . 3 | |
36 | 32, 33, 34, 35 | mp3an 1332 | . 2 |
37 | pp0ex 4175 | . . . 4 | |
38 | 37 | rabex 4133 | . . 3 |
39 | 38 | elon 4359 | . 2 |
40 | 36, 39 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 wal 1346 wceq 1348 wcel 2141 crab 2452 wss 3121 c0 3414 csn 3583 cpr 3584 wtr 4087 word 4347 con0 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 |
This theorem is referenced by: ordtri2or2exmid 4555 ontri2orexmidim 4556 |
Copyright terms: Public domain | W3C validator |