Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtri2or2exmidlem | Unicode version |
Description: A set which is if or if is an ordinal. (Contributed by Jim Kingdon, 29-Aug-2021.) |
Ref | Expression |
---|---|
ordtri2or2exmidlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . . . . . 7 | |
2 | noel 3413 | . . . . . . . . 9 | |
3 | eleq2 2230 | . . . . . . . . 9 | |
4 | 2, 3 | mtbiri 665 | . . . . . . . 8 |
5 | 4 | adantl 275 | . . . . . . 7 |
6 | 1, 5 | pm2.21dd 610 | . . . . . 6 |
7 | eleq2 2230 | . . . . . . . . . . 11 | |
8 | 7 | biimpac 296 | . . . . . . . . . 10 |
9 | velsn 3593 | . . . . . . . . . 10 | |
10 | 8, 9 | sylib 121 | . . . . . . . . 9 |
11 | orc 702 | . . . . . . . . . 10 | |
12 | vex 2729 | . . . . . . . . . . 11 | |
13 | 12 | elpr 3597 | . . . . . . . . . 10 |
14 | 11, 13 | sylibr 133 | . . . . . . . . 9 |
15 | 10, 14 | syl 14 | . . . . . . . 8 |
16 | 15 | adantlr 469 | . . . . . . 7 |
17 | biidd 171 | . . . . . . . . . 10 | |
18 | 17 | elrab 2882 | . . . . . . . . 9 |
19 | 18 | simprbi 273 | . . . . . . . 8 |
20 | 19 | ad2antlr 481 | . . . . . . 7 |
21 | biidd 171 | . . . . . . . 8 | |
22 | 21 | elrab 2882 | . . . . . . 7 |
23 | 16, 20, 22 | sylanbrc 414 | . . . . . 6 |
24 | elrabi 2879 | . . . . . . . 8 | |
25 | vex 2729 | . . . . . . . . 9 | |
26 | 25 | elpr 3597 | . . . . . . . 8 |
27 | 24, 26 | sylib 121 | . . . . . . 7 |
28 | 27 | adantl 275 | . . . . . 6 |
29 | 6, 23, 28 | mpjaodan 788 | . . . . 5 |
30 | 29 | gen2 1438 | . . . 4 |
31 | dftr2 4082 | . . . 4 | |
32 | 30, 31 | mpbir 145 | . . 3 |
33 | ssrab2 3227 | . . 3 | |
34 | 2ordpr 4501 | . . 3 | |
35 | trssord 4358 | . . 3 | |
36 | 32, 33, 34, 35 | mp3an 1327 | . 2 |
37 | pp0ex 4168 | . . . 4 | |
38 | 37 | rabex 4126 | . . 3 |
39 | 38 | elon 4352 | . 2 |
40 | 36, 39 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wal 1341 wceq 1343 wcel 2136 crab 2448 wss 3116 c0 3409 csn 3576 cpr 3577 wtr 4080 word 4340 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: ordtri2or2exmid 4548 ontri2orexmidim 4549 |
Copyright terms: Public domain | W3C validator |