| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtri2or2exmidlem | Unicode version | ||
| Description: A set which is |
| Ref | Expression |
|---|---|
| ordtri2or2exmidlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . . . 7
| |
| 2 | noel 3466 |
. . . . . . . . 9
| |
| 3 | eleq2 2270 |
. . . . . . . . 9
| |
| 4 | 2, 3 | mtbiri 677 |
. . . . . . . 8
|
| 5 | 4 | adantl 277 |
. . . . . . 7
|
| 6 | 1, 5 | pm2.21dd 621 |
. . . . . 6
|
| 7 | eleq2 2270 |
. . . . . . . . . . 11
| |
| 8 | 7 | biimpac 298 |
. . . . . . . . . 10
|
| 9 | velsn 3652 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | sylib 122 |
. . . . . . . . 9
|
| 11 | orc 714 |
. . . . . . . . . 10
| |
| 12 | vex 2776 |
. . . . . . . . . . 11
| |
| 13 | 12 | elpr 3656 |
. . . . . . . . . 10
|
| 14 | 11, 13 | sylibr 134 |
. . . . . . . . 9
|
| 15 | 10, 14 | syl 14 |
. . . . . . . 8
|
| 16 | 15 | adantlr 477 |
. . . . . . 7
|
| 17 | biidd 172 |
. . . . . . . . . 10
| |
| 18 | 17 | elrab 2931 |
. . . . . . . . 9
|
| 19 | 18 | simprbi 275 |
. . . . . . . 8
|
| 20 | 19 | ad2antlr 489 |
. . . . . . 7
|
| 21 | biidd 172 |
. . . . . . . 8
| |
| 22 | 21 | elrab 2931 |
. . . . . . 7
|
| 23 | 16, 20, 22 | sylanbrc 417 |
. . . . . 6
|
| 24 | elrabi 2928 |
. . . . . . . 8
| |
| 25 | vex 2776 |
. . . . . . . . 9
| |
| 26 | 25 | elpr 3656 |
. . . . . . . 8
|
| 27 | 24, 26 | sylib 122 |
. . . . . . 7
|
| 28 | 27 | adantl 277 |
. . . . . 6
|
| 29 | 6, 23, 28 | mpjaodan 800 |
. . . . 5
|
| 30 | 29 | gen2 1474 |
. . . 4
|
| 31 | dftr2 4149 |
. . . 4
| |
| 32 | 30, 31 | mpbir 146 |
. . 3
|
| 33 | ssrab2 3280 |
. . 3
| |
| 34 | 2ordpr 4577 |
. . 3
| |
| 35 | trssord 4432 |
. . 3
| |
| 36 | 32, 33, 34, 35 | mp3an 1350 |
. 2
|
| 37 | pp0ex 4238 |
. . . 4
| |
| 38 | 37 | rabex 4193 |
. . 3
|
| 39 | 38 | elon 4426 |
. 2
|
| 40 | 36, 39 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-uni 3854 df-tr 4148 df-iord 4418 df-on 4420 df-suc 4423 |
| This theorem is referenced by: ordtri2or2exmid 4624 ontri2orexmidim 4625 |
| Copyright terms: Public domain | W3C validator |