ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtri2or2exmidlem Unicode version

Theorem ordtri2or2exmidlem 4522
Description: A set which is  2o if  ph or  (/) if  -.  ph is an ordinal. (Contributed by Jim Kingdon, 29-Aug-2021.)
Assertion
Ref Expression
ordtri2or2exmidlem  |-  { x  e.  { (/) ,  { (/) } }  |  ph }  e.  On
Distinct variable group:    ph, x

Proof of Theorem ordtri2or2exmidlem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . 7  |-  ( ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) ,  { (/) } }  |  ph } )  /\  z  =  (/) )  ->  y  e.  z )
2 noel 3426 . . . . . . . . 9  |-  -.  y  e.  (/)
3 eleq2 2241 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( y  e.  z  <->  y  e.  (/) ) )
42, 3mtbiri 675 . . . . . . . 8  |-  ( z  =  (/)  ->  -.  y  e.  z )
54adantl 277 . . . . . . 7  |-  ( ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) ,  { (/) } }  |  ph } )  /\  z  =  (/) )  ->  -.  y  e.  z )
61, 5pm2.21dd 620 . . . . . 6  |-  ( ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) ,  { (/) } }  |  ph } )  /\  z  =  (/) )  ->  y  e.  { x  e.  { (/)
,  { (/) } }  |  ph } )
7 eleq2 2241 . . . . . . . . . . 11  |-  ( z  =  { (/) }  ->  ( y  e.  z  <->  y  e.  {
(/) } ) )
87biimpac 298 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  z  =  { (/) } )  ->  y  e.  { (/)
} )
9 velsn 3608 . . . . . . . . . 10  |-  ( y  e.  { (/) }  <->  y  =  (/) )
108, 9sylib 122 . . . . . . . . 9  |-  ( ( y  e.  z  /\  z  =  { (/) } )  ->  y  =  (/) )
11 orc 712 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( y  =  (/)  \/  y  =  { (/) } ) )
12 vex 2740 . . . . . . . . . . 11  |-  y  e. 
_V
1312elpr 3612 . . . . . . . . . 10  |-  ( y  e.  { (/) ,  { (/)
} }  <->  ( y  =  (/)  \/  y  =  { (/) } ) )
1411, 13sylibr 134 . . . . . . . . 9  |-  ( y  =  (/)  ->  y  e. 
{ (/) ,  { (/) } } )
1510, 14syl 14 . . . . . . . 8  |-  ( ( y  e.  z  /\  z  =  { (/) } )  ->  y  e.  { (/)
,  { (/) } }
)
1615adantlr 477 . . . . . . 7  |-  ( ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) ,  { (/) } }  |  ph } )  /\  z  =  { (/) } )  -> 
y  e.  { (/) ,  { (/) } } )
17 biidd 172 . . . . . . . . . 10  |-  ( x  =  z  ->  ( ph 
<-> 
ph ) )
1817elrab 2893 . . . . . . . . 9  |-  ( z  e.  { x  e. 
{ (/) ,  { (/) } }  |  ph }  <->  ( z  e.  { (/) ,  { (/) } }  /\  ph ) )
1918simprbi 275 . . . . . . . 8  |-  ( z  e.  { x  e. 
{ (/) ,  { (/) } }  |  ph }  ->  ph )
2019ad2antlr 489 . . . . . . 7  |-  ( ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) ,  { (/) } }  |  ph } )  /\  z  =  { (/) } )  ->  ph )
21 biidd 172 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<-> 
ph ) )
2221elrab 2893 . . . . . . 7  |-  ( y  e.  { x  e. 
{ (/) ,  { (/) } }  |  ph }  <->  ( y  e.  { (/) ,  { (/) } }  /\  ph ) )
2316, 20, 22sylanbrc 417 . . . . . 6  |-  ( ( ( y  e.  z  /\  z  e.  {
x  e.  { (/) ,  { (/) } }  |  ph } )  /\  z  =  { (/) } )  -> 
y  e.  { x  e.  { (/) ,  { (/) } }  |  ph }
)
24 elrabi 2890 . . . . . . . 8  |-  ( z  e.  { x  e. 
{ (/) ,  { (/) } }  |  ph }  ->  z  e.  { (/) ,  { (/) } } )
25 vex 2740 . . . . . . . . 9  |-  z  e. 
_V
2625elpr 3612 . . . . . . . 8  |-  ( z  e.  { (/) ,  { (/)
} }  <->  ( z  =  (/)  \/  z  =  { (/) } ) )
2724, 26sylib 122 . . . . . . 7  |-  ( z  e.  { x  e. 
{ (/) ,  { (/) } }  |  ph }  ->  ( z  =  (/)  \/  z  =  { (/) } ) )
2827adantl 277 . . . . . 6  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) ,  { (/) } }  |  ph }
)  ->  ( z  =  (/)  \/  z  =  { (/) } ) )
296, 23, 28mpjaodan 798 . . . . 5  |-  ( ( y  e.  z  /\  z  e.  { x  e.  { (/) ,  { (/) } }  |  ph }
)  ->  y  e.  { x  e.  { (/) ,  { (/) } }  |  ph } )
3029gen2 1450 . . . 4  |-  A. y A. z ( ( y  e.  z  /\  z  e.  { x  e.  { (/)
,  { (/) } }  |  ph } )  -> 
y  e.  { x  e.  { (/) ,  { (/) } }  |  ph }
)
31 dftr2 4100 . . . 4  |-  ( Tr 
{ x  e.  { (/)
,  { (/) } }  |  ph }  <->  A. y A. z ( ( y  e.  z  /\  z  e.  { x  e.  { (/)
,  { (/) } }  |  ph } )  -> 
y  e.  { x  e.  { (/) ,  { (/) } }  |  ph }
) )
3230, 31mpbir 146 . . 3  |-  Tr  {
x  e.  { (/) ,  { (/) } }  |  ph }
33 ssrab2 3240 . . 3  |-  { x  e.  { (/) ,  { (/) } }  |  ph }  C_ 
{ (/) ,  { (/) } }
34 2ordpr 4520 . . 3  |-  Ord  { (/)
,  { (/) } }
35 trssord 4377 . . 3  |-  ( ( Tr  { x  e. 
{ (/) ,  { (/) } }  |  ph }  /\  { x  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) ,  { (/) } }  /\  Ord  { (/) ,  { (/) } } )  ->  Ord  { x  e.  { (/) ,  { (/) } }  |  ph } )
3632, 33, 34, 35mp3an 1337 . 2  |-  Ord  {
x  e.  { (/) ,  { (/) } }  |  ph }
37 pp0ex 4186 . . . 4  |-  { (/) ,  { (/) } }  e.  _V
3837rabex 4144 . . 3  |-  { x  e.  { (/) ,  { (/) } }  |  ph }  e.  _V
3938elon 4371 . 2  |-  ( { x  e.  { (/) ,  { (/) } }  |  ph }  e.  On  <->  Ord  { x  e.  { (/) ,  { (/) } }  |  ph }
)
4036, 39mpbir 146 1  |-  { x  e.  { (/) ,  { (/) } }  |  ph }  e.  On
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708   A.wal 1351    = wceq 1353    e. wcel 2148   {crab 2459    C_ wss 3129   (/)c0 3422   {csn 3591   {cpr 3592   Tr wtr 4098   Ord word 4359   Oncon0 4360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-uni 3808  df-tr 4099  df-iord 4363  df-on 4365  df-suc 4368
This theorem is referenced by:  ordtri2or2exmid  4567  ontri2orexmidim  4568
  Copyright terms: Public domain W3C validator