Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtri2or2exmidlem | Unicode version |
Description: A set which is if or if is an ordinal. (Contributed by Jim Kingdon, 29-Aug-2021.) |
Ref | Expression |
---|---|
ordtri2or2exmidlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . . . . . 7 | |
2 | noel 3398 | . . . . . . . . 9 | |
3 | eleq2 2221 | . . . . . . . . 9 | |
4 | 2, 3 | mtbiri 665 | . . . . . . . 8 |
5 | 4 | adantl 275 | . . . . . . 7 |
6 | 1, 5 | pm2.21dd 610 | . . . . . 6 |
7 | eleq2 2221 | . . . . . . . . . . 11 | |
8 | 7 | biimpac 296 | . . . . . . . . . 10 |
9 | velsn 3577 | . . . . . . . . . 10 | |
10 | 8, 9 | sylib 121 | . . . . . . . . 9 |
11 | orc 702 | . . . . . . . . . 10 | |
12 | vex 2715 | . . . . . . . . . . 11 | |
13 | 12 | elpr 3581 | . . . . . . . . . 10 |
14 | 11, 13 | sylibr 133 | . . . . . . . . 9 |
15 | 10, 14 | syl 14 | . . . . . . . 8 |
16 | 15 | adantlr 469 | . . . . . . 7 |
17 | biidd 171 | . . . . . . . . . 10 | |
18 | 17 | elrab 2868 | . . . . . . . . 9 |
19 | 18 | simprbi 273 | . . . . . . . 8 |
20 | 19 | ad2antlr 481 | . . . . . . 7 |
21 | biidd 171 | . . . . . . . 8 | |
22 | 21 | elrab 2868 | . . . . . . 7 |
23 | 16, 20, 22 | sylanbrc 414 | . . . . . 6 |
24 | elrabi 2865 | . . . . . . . 8 | |
25 | vex 2715 | . . . . . . . . 9 | |
26 | 25 | elpr 3581 | . . . . . . . 8 |
27 | 24, 26 | sylib 121 | . . . . . . 7 |
28 | 27 | adantl 275 | . . . . . 6 |
29 | 6, 23, 28 | mpjaodan 788 | . . . . 5 |
30 | 29 | gen2 1430 | . . . 4 |
31 | dftr2 4064 | . . . 4 | |
32 | 30, 31 | mpbir 145 | . . 3 |
33 | ssrab2 3213 | . . 3 | |
34 | 2ordpr 4482 | . . 3 | |
35 | trssord 4340 | . . 3 | |
36 | 32, 33, 34, 35 | mp3an 1319 | . 2 |
37 | pp0ex 4150 | . . . 4 | |
38 | 37 | rabex 4108 | . . 3 |
39 | 38 | elon 4334 | . 2 |
40 | 36, 39 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wal 1333 wceq 1335 wcel 2128 crab 2439 wss 3102 c0 3394 csn 3560 cpr 3561 wtr 4062 word 4322 con0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-tr 4063 df-iord 4326 df-on 4328 df-suc 4331 |
This theorem is referenced by: ordtri2or2exmid 4529 ontri2orexmidim 4530 |
Copyright terms: Public domain | W3C validator |