| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtri2or2exmidlem | Unicode version | ||
| Description: A set which is |
| Ref | Expression |
|---|---|
| ordtri2or2exmidlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . . . 7
| |
| 2 | noel 3455 |
. . . . . . . . 9
| |
| 3 | eleq2 2260 |
. . . . . . . . 9
| |
| 4 | 2, 3 | mtbiri 676 |
. . . . . . . 8
|
| 5 | 4 | adantl 277 |
. . . . . . 7
|
| 6 | 1, 5 | pm2.21dd 621 |
. . . . . 6
|
| 7 | eleq2 2260 |
. . . . . . . . . . 11
| |
| 8 | 7 | biimpac 298 |
. . . . . . . . . 10
|
| 9 | velsn 3640 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | sylib 122 |
. . . . . . . . 9
|
| 11 | orc 713 |
. . . . . . . . . 10
| |
| 12 | vex 2766 |
. . . . . . . . . . 11
| |
| 13 | 12 | elpr 3644 |
. . . . . . . . . 10
|
| 14 | 11, 13 | sylibr 134 |
. . . . . . . . 9
|
| 15 | 10, 14 | syl 14 |
. . . . . . . 8
|
| 16 | 15 | adantlr 477 |
. . . . . . 7
|
| 17 | biidd 172 |
. . . . . . . . . 10
| |
| 18 | 17 | elrab 2920 |
. . . . . . . . 9
|
| 19 | 18 | simprbi 275 |
. . . . . . . 8
|
| 20 | 19 | ad2antlr 489 |
. . . . . . 7
|
| 21 | biidd 172 |
. . . . . . . 8
| |
| 22 | 21 | elrab 2920 |
. . . . . . 7
|
| 23 | 16, 20, 22 | sylanbrc 417 |
. . . . . 6
|
| 24 | elrabi 2917 |
. . . . . . . 8
| |
| 25 | vex 2766 |
. . . . . . . . 9
| |
| 26 | 25 | elpr 3644 |
. . . . . . . 8
|
| 27 | 24, 26 | sylib 122 |
. . . . . . 7
|
| 28 | 27 | adantl 277 |
. . . . . 6
|
| 29 | 6, 23, 28 | mpjaodan 799 |
. . . . 5
|
| 30 | 29 | gen2 1464 |
. . . 4
|
| 31 | dftr2 4134 |
. . . 4
| |
| 32 | 30, 31 | mpbir 146 |
. . 3
|
| 33 | ssrab2 3269 |
. . 3
| |
| 34 | 2ordpr 4561 |
. . 3
| |
| 35 | trssord 4416 |
. . 3
| |
| 36 | 32, 33, 34, 35 | mp3an 1348 |
. 2
|
| 37 | pp0ex 4223 |
. . . 4
| |
| 38 | 37 | rabex 4178 |
. . 3
|
| 39 | 38 | elon 4410 |
. 2
|
| 40 | 36, 39 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 |
| This theorem is referenced by: ordtri2or2exmid 4608 ontri2orexmidim 4609 |
| Copyright terms: Public domain | W3C validator |