ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elon GIF version

Theorem elon 4334
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Hypothesis
Ref Expression
elon.1 𝐴 ∈ V
Assertion
Ref Expression
elon (𝐴 ∈ On ↔ Ord 𝐴)

Proof of Theorem elon
StepHypRef Expression
1 elon.1 . 2 𝐴 ∈ V
2 elong 4333 . 2 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
31, 2ax-mp 5 1 (𝐴 ∈ On ↔ Ord 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 2128  Vcvv 2712  Ord word 4322  Oncon0 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-in 3108  df-ss 3115  df-uni 3773  df-tr 4063  df-iord 4326  df-on 4328
This theorem is referenced by:  tron  4342  0elon  4352  ordtriexmidlem  4478  ontr2exmid  4484  ordtri2or2exmidlem  4485  onsucelsucexmidlem  4488  exmidonfinlem  7128  bj-omelon  13547
  Copyright terms: Public domain W3C validator