ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwpwel GIF version

Theorem elpwpwel 4510
Description: A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.)
Assertion
Ref Expression
elpwpwel (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwpwel
StepHypRef Expression
1 uniexb 4508 . . 3 (𝐴 ∈ V ↔ 𝐴 ∈ V)
21anbi1i 458 . 2 ((𝐴 ∈ V ∧ 𝐴𝐵) ↔ ( 𝐴 ∈ V ∧ 𝐴𝐵))
3 elpwpw 4003 . 2 (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))
4 elpwb 3615 . 2 ( 𝐴 ∈ 𝒫 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝐴𝐵))
52, 3, 43bitr4i 212 1 (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2167  Vcvv 2763  wss 3157  𝒫 cpw 3605   cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-uni 3840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator