| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabf | GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) |
| Ref | Expression |
|---|---|
| elrabf.1 | ⊢ Ⅎ𝑥𝐴 |
| elrabf.2 | ⊢ Ⅎ𝑥𝐵 |
| elrabf.3 | ⊢ Ⅎ𝑥𝜓 |
| elrabf.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrabf | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} → 𝐴 ∈ V) | |
| 2 | elex 2782 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → 𝐴 ∈ V) |
| 4 | df-rab 2492 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 5 | 4 | eleq2i 2271 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
| 6 | elrabf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 7 | elrabf.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 8 | 6, 7 | nfel 2356 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| 9 | elrabf.3 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 10 | 8, 9 | nfan 1587 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 ∧ 𝜓) |
| 11 | eleq1 2267 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 12 | elrabf.4 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 13 | 11, 12 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 14 | 6, 10, 13 | elabgf 2914 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 15 | 5, 14 | bitrid 192 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 16 | 1, 3, 15 | pm5.21nii 705 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 Ⅎwnf 1482 ∈ wcel 2175 {cab 2190 Ⅎwnfc 2334 {crab 2487 Vcvv 2771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-v 2773 |
| This theorem is referenced by: elrab 2928 frind 4398 rabxfrd 4515 infssuzcldc 10376 nnwosdc 12302 |
| Copyright terms: Public domain | W3C validator |