| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabf | GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) |
| Ref | Expression |
|---|---|
| elrabf.1 | ⊢ Ⅎ𝑥𝐴 |
| elrabf.2 | ⊢ Ⅎ𝑥𝐵 |
| elrabf.3 | ⊢ Ⅎ𝑥𝜓 |
| elrabf.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrabf | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} → 𝐴 ∈ V) | |
| 2 | elex 2811 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → 𝐴 ∈ V) |
| 4 | df-rab 2517 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 5 | 4 | eleq2i 2296 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
| 6 | elrabf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 7 | elrabf.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 8 | 6, 7 | nfel 2381 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| 9 | elrabf.3 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 10 | 8, 9 | nfan 1611 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 ∧ 𝜓) |
| 11 | eleq1 2292 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 12 | elrabf.4 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 13 | 11, 12 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 14 | 6, 10, 13 | elabgf 2945 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 15 | 5, 14 | bitrid 192 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
| 16 | 1, 3, 15 | pm5.21nii 709 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 {crab 2512 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 |
| This theorem is referenced by: elrab 2959 invdisjrab 4076 frind 4442 rabxfrd 4559 infssuzcldc 10450 nnwosdc 12555 |
| Copyright terms: Public domain | W3C validator |