ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmpt1s Unicode version

Theorem elrnmpt1s 4870
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
rnmpt.1  |-  F  =  ( x  e.  A  |->  B )
elrnmpt1s.1  |-  ( x  =  D  ->  B  =  C )
Assertion
Ref Expression
elrnmpt1s  |-  ( ( D  e.  A  /\  C  e.  V )  ->  C  e.  ran  F
)
Distinct variable groups:    x, C    x, A    x, D
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem elrnmpt1s
StepHypRef Expression
1 eqid 2175 . . 3  |-  C  =  C
2 elrnmpt1s.1 . . . . 5  |-  ( x  =  D  ->  B  =  C )
32eqeq2d 2187 . . . 4  |-  ( x  =  D  ->  ( C  =  B  <->  C  =  C ) )
43rspcev 2839 . . 3  |-  ( ( D  e.  A  /\  C  =  C )  ->  E. x  e.  A  C  =  B )
51, 4mpan2 425 . 2  |-  ( D  e.  A  ->  E. x  e.  A  C  =  B )
6 rnmpt.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
76elrnmpt 4869 . . 3  |-  ( C  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
87biimparc 299 . 2  |-  ( ( E. x  e.  A  C  =  B  /\  C  e.  V )  ->  C  e.  ran  F
)
95, 8sylan 283 1  |-  ( ( D  e.  A  /\  C  e.  V )  ->  C  e.  ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   E.wrex 2454    |-> cmpt 4059   ran crn 4621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-mpt 4061  df-cnv 4628  df-dm 4630  df-rn 4631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator