| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrnmpt1 | Unicode version | ||
| Description: Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 |
|
| Ref | Expression |
|---|---|
| elrnmpt1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 |
. . . 4
| |
| 2 | id 19 |
. . . . . . 7
| |
| 3 | csbeq1a 3102 |
. . . . . . 7
| |
| 4 | 2, 3 | eleq12d 2276 |
. . . . . 6
|
| 5 | csbeq1a 3102 |
. . . . . . 7
| |
| 6 | 5 | biantrud 304 |
. . . . . 6
|
| 7 | 4, 6 | bitr2d 189 |
. . . . 5
|
| 8 | 7 | equcoms 1731 |
. . . 4
|
| 9 | 1, 8 | spcev 2868 |
. . 3
|
| 10 | df-rex 2490 |
. . . . . 6
| |
| 11 | nfv 1551 |
. . . . . . 7
| |
| 12 | nfcsb1v 3126 |
. . . . . . . . 9
| |
| 13 | 12 | nfcri 2342 |
. . . . . . . 8
|
| 14 | nfcsb1v 3126 |
. . . . . . . . 9
| |
| 15 | 14 | nfeq2 2360 |
. . . . . . . 8
|
| 16 | 13, 15 | nfan 1588 |
. . . . . . 7
|
| 17 | 5 | eqeq2d 2217 |
. . . . . . . 8
|
| 18 | 4, 17 | anbi12d 473 |
. . . . . . 7
|
| 19 | 11, 16, 18 | cbvex 1779 |
. . . . . 6
|
| 20 | 10, 19 | bitri 184 |
. . . . 5
|
| 21 | eqeq1 2212 |
. . . . . . 7
| |
| 22 | 21 | anbi2d 464 |
. . . . . 6
|
| 23 | 22 | exbidv 1848 |
. . . . 5
|
| 24 | 20, 23 | bitrid 192 |
. . . 4
|
| 25 | rnmpt.1 |
. . . . 5
| |
| 26 | 25 | rnmpt 4927 |
. . . 4
|
| 27 | 24, 26 | elab2g 2920 |
. . 3
|
| 28 | 9, 27 | imbitrrid 156 |
. 2
|
| 29 | 28 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-mpt 4108 df-cnv 4684 df-dm 4686 df-rn 4687 |
| This theorem is referenced by: fliftel1 5865 |
| Copyright terms: Public domain | W3C validator |