Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrnmpt1 | Unicode version |
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 |
Ref | Expression |
---|---|
elrnmpt1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . 4 | |
2 | id 19 | . . . . . . 7 | |
3 | csbeq1a 3058 | . . . . . . 7 | |
4 | 2, 3 | eleq12d 2241 | . . . . . 6 |
5 | csbeq1a 3058 | . . . . . . 7 | |
6 | 5 | biantrud 302 | . . . . . 6 |
7 | 4, 6 | bitr2d 188 | . . . . 5 |
8 | 7 | equcoms 1701 | . . . 4 |
9 | 1, 8 | spcev 2825 | . . 3 |
10 | df-rex 2454 | . . . . . 6 | |
11 | nfv 1521 | . . . . . . 7 | |
12 | nfcsb1v 3082 | . . . . . . . . 9 | |
13 | 12 | nfcri 2306 | . . . . . . . 8 |
14 | nfcsb1v 3082 | . . . . . . . . 9 | |
15 | 14 | nfeq2 2324 | . . . . . . . 8 |
16 | 13, 15 | nfan 1558 | . . . . . . 7 |
17 | 5 | eqeq2d 2182 | . . . . . . . 8 |
18 | 4, 17 | anbi12d 470 | . . . . . . 7 |
19 | 11, 16, 18 | cbvex 1749 | . . . . . 6 |
20 | 10, 19 | bitri 183 | . . . . 5 |
21 | eqeq1 2177 | . . . . . . 7 | |
22 | 21 | anbi2d 461 | . . . . . 6 |
23 | 22 | exbidv 1818 | . . . . 5 |
24 | 20, 23 | syl5bb 191 | . . . 4 |
25 | rnmpt.1 | . . . . 5 | |
26 | 25 | rnmpt 4859 | . . . 4 |
27 | 24, 26 | elab2g 2877 | . . 3 |
28 | 9, 27 | syl5ibr 155 | . 2 |
29 | 28 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wrex 2449 csb 3049 cmpt 4050 crn 4612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-mpt 4052 df-cnv 4619 df-dm 4621 df-rn 4622 |
This theorem is referenced by: fliftel1 5773 |
Copyright terms: Public domain | W3C validator |