Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrnmpt1 | Unicode version |
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 |
Ref | Expression |
---|---|
elrnmpt1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . 4 | |
2 | id 19 | . . . . . . 7 | |
3 | csbeq1a 3054 | . . . . . . 7 | |
4 | 2, 3 | eleq12d 2237 | . . . . . 6 |
5 | csbeq1a 3054 | . . . . . . 7 | |
6 | 5 | biantrud 302 | . . . . . 6 |
7 | 4, 6 | bitr2d 188 | . . . . 5 |
8 | 7 | equcoms 1696 | . . . 4 |
9 | 1, 8 | spcev 2821 | . . 3 |
10 | df-rex 2450 | . . . . . 6 | |
11 | nfv 1516 | . . . . . . 7 | |
12 | nfcsb1v 3078 | . . . . . . . . 9 | |
13 | 12 | nfcri 2302 | . . . . . . . 8 |
14 | nfcsb1v 3078 | . . . . . . . . 9 | |
15 | 14 | nfeq2 2320 | . . . . . . . 8 |
16 | 13, 15 | nfan 1553 | . . . . . . 7 |
17 | 5 | eqeq2d 2177 | . . . . . . . 8 |
18 | 4, 17 | anbi12d 465 | . . . . . . 7 |
19 | 11, 16, 18 | cbvex 1744 | . . . . . 6 |
20 | 10, 19 | bitri 183 | . . . . 5 |
21 | eqeq1 2172 | . . . . . . 7 | |
22 | 21 | anbi2d 460 | . . . . . 6 |
23 | 22 | exbidv 1813 | . . . . 5 |
24 | 20, 23 | syl5bb 191 | . . . 4 |
25 | rnmpt.1 | . . . . 5 | |
26 | 25 | rnmpt 4852 | . . . 4 |
27 | 24, 26 | elab2g 2873 | . . 3 |
28 | 9, 27 | syl5ibr 155 | . 2 |
29 | 28 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wrex 2445 csb 3045 cmpt 4043 crn 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-mpt 4045 df-cnv 4612 df-dm 4614 df-rn 4615 |
This theorem is referenced by: fliftel1 5762 |
Copyright terms: Public domain | W3C validator |