ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmpt1 Unicode version

Theorem elrnmpt1 4855
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
elrnmpt1  |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  ran  F
)

Proof of Theorem elrnmpt1
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . 4  |-  x  e. 
_V
2 id 19 . . . . . . 7  |-  ( x  =  z  ->  x  =  z )
3 csbeq1a 3054 . . . . . . 7  |-  ( x  =  z  ->  A  =  [_ z  /  x ]_ A )
42, 3eleq12d 2237 . . . . . 6  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  [_ z  /  x ]_ A ) )
5 csbeq1a 3054 . . . . . . 7  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
65biantrud 302 . . . . . 6  |-  ( x  =  z  ->  (
z  e.  [_ z  /  x ]_ A  <->  ( z  e.  [_ z  /  x ]_ A  /\  B  = 
[_ z  /  x ]_ B ) ) )
74, 6bitr2d 188 . . . . 5  |-  ( x  =  z  ->  (
( z  e.  [_ z  /  x ]_ A  /\  B  =  [_ z  /  x ]_ B )  <-> 
x  e.  A ) )
87equcoms 1696 . . . 4  |-  ( z  =  x  ->  (
( z  e.  [_ z  /  x ]_ A  /\  B  =  [_ z  /  x ]_ B )  <-> 
x  e.  A ) )
91, 8spcev 2821 . . 3  |-  ( x  e.  A  ->  E. z
( z  e.  [_ z  /  x ]_ A  /\  B  =  [_ z  /  x ]_ B ) )
10 df-rex 2450 . . . . . 6  |-  ( E. x  e.  A  y  =  B  <->  E. x
( x  e.  A  /\  y  =  B
) )
11 nfv 1516 . . . . . . 7  |-  F/ z ( x  e.  A  /\  y  =  B
)
12 nfcsb1v 3078 . . . . . . . . 9  |-  F/_ x [_ z  /  x ]_ A
1312nfcri 2302 . . . . . . . 8  |-  F/ x  z  e.  [_ z  /  x ]_ A
14 nfcsb1v 3078 . . . . . . . . 9  |-  F/_ x [_ z  /  x ]_ B
1514nfeq2 2320 . . . . . . . 8  |-  F/ x  y  =  [_ z  /  x ]_ B
1613, 15nfan 1553 . . . . . . 7  |-  F/ x
( z  e.  [_ z  /  x ]_ A  /\  y  =  [_ z  /  x ]_ B )
175eqeq2d 2177 . . . . . . . 8  |-  ( x  =  z  ->  (
y  =  B  <->  y  =  [_ z  /  x ]_ B ) )
184, 17anbi12d 465 . . . . . . 7  |-  ( x  =  z  ->  (
( x  e.  A  /\  y  =  B
)  <->  ( z  e. 
[_ z  /  x ]_ A  /\  y  =  [_ z  /  x ]_ B ) ) )
1911, 16, 18cbvex 1744 . . . . . 6  |-  ( E. x ( x  e.  A  /\  y  =  B )  <->  E. z
( z  e.  [_ z  /  x ]_ A  /\  y  =  [_ z  /  x ]_ B ) )
2010, 19bitri 183 . . . . 5  |-  ( E. x  e.  A  y  =  B  <->  E. z
( z  e.  [_ z  /  x ]_ A  /\  y  =  [_ z  /  x ]_ B ) )
21 eqeq1 2172 . . . . . . 7  |-  ( y  =  B  ->  (
y  =  [_ z  /  x ]_ B  <->  B  =  [_ z  /  x ]_ B ) )
2221anbi2d 460 . . . . . 6  |-  ( y  =  B  ->  (
( z  e.  [_ z  /  x ]_ A  /\  y  =  [_ z  /  x ]_ B )  <-> 
( z  e.  [_ z  /  x ]_ A  /\  B  =  [_ z  /  x ]_ B ) ) )
2322exbidv 1813 . . . . 5  |-  ( y  =  B  ->  ( E. z ( z  e. 
[_ z  /  x ]_ A  /\  y  =  [_ z  /  x ]_ B )  <->  E. z
( z  e.  [_ z  /  x ]_ A  /\  B  =  [_ z  /  x ]_ B ) ) )
2420, 23syl5bb 191 . . . 4  |-  ( y  =  B  ->  ( E. x  e.  A  y  =  B  <->  E. z
( z  e.  [_ z  /  x ]_ A  /\  B  =  [_ z  /  x ]_ B ) ) )
25 rnmpt.1 . . . . 5  |-  F  =  ( x  e.  A  |->  B )
2625rnmpt 4852 . . . 4  |-  ran  F  =  { y  |  E. x  e.  A  y  =  B }
2724, 26elab2g 2873 . . 3  |-  ( B  e.  V  ->  ( B  e.  ran  F  <->  E. z
( z  e.  [_ z  /  x ]_ A  /\  B  =  [_ z  /  x ]_ B ) ) )
289, 27syl5ibr 155 . 2  |-  ( B  e.  V  ->  (
x  e.  A  ->  B  e.  ran  F ) )
2928impcom 124 1  |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   E.wrex 2445   [_csb 3045    |-> cmpt 4043   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-mpt 4045  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  fliftel1  5762
  Copyright terms: Public domain W3C validator