ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmpt Unicode version

Theorem elrnmpt 4869
Description: The range of a function in maps-to notation. (Contributed by Mario Carneiro, 20-Feb-2015.)
Hypothesis
Ref Expression
rnmpt.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
elrnmpt  |-  ( C  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    F( x)    V( x)

Proof of Theorem elrnmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2182 . . 3  |-  ( y  =  C  ->  (
y  =  B  <->  C  =  B ) )
21rexbidv 2476 . 2  |-  ( y  =  C  ->  ( E. x  e.  A  y  =  B  <->  E. x  e.  A  C  =  B ) )
3 rnmpt.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
43rnmpt 4868 . 2  |-  ran  F  =  { y  |  E. x  e.  A  y  =  B }
52, 4elab2g 2882 1  |-  ( C  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2146   E.wrex 2454    |-> cmpt 4059   ran crn 4621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-mpt 4061  df-cnv 4628  df-dm 4630  df-rn 4631
This theorem is referenced by:  elrnmpt1s  4870  elrnmptdv  4874  elrnmpt2d  4875  fifo  6969
  Copyright terms: Public domain W3C validator