ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmpt Unicode version

Theorem elrnmpt 4928
Description: The range of a function in maps-to notation. (Contributed by Mario Carneiro, 20-Feb-2015.)
Hypothesis
Ref Expression
rnmpt.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
elrnmpt  |-  ( C  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    F( x)    V( x)

Proof of Theorem elrnmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2212 . . 3  |-  ( y  =  C  ->  (
y  =  B  <->  C  =  B ) )
21rexbidv 2507 . 2  |-  ( y  =  C  ->  ( E. x  e.  A  y  =  B  <->  E. x  e.  A  C  =  B ) )
3 rnmpt.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
43rnmpt 4927 . 2  |-  ran  F  =  { y  |  E. x  e.  A  y  =  B }
52, 4elab2g 2920 1  |-  ( C  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   E.wrex 2485    |-> cmpt 4106   ran crn 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-mpt 4108  df-cnv 4684  df-dm 4686  df-rn 4687
This theorem is referenced by:  elrnmpt1s  4929  elrnmptdv  4933  elrnmpt2d  4934  fifo  7084  4sqleminfi  12753  conjnmzb  13649  gausslemma2dlem1a  15568
  Copyright terms: Public domain W3C validator