ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmpt Unicode version

Theorem elrnmpt 4973
Description: The range of a function in maps-to notation. (Contributed by Mario Carneiro, 20-Feb-2015.)
Hypothesis
Ref Expression
rnmpt.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
elrnmpt  |-  ( C  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    F( x)    V( x)

Proof of Theorem elrnmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2236 . . 3  |-  ( y  =  C  ->  (
y  =  B  <->  C  =  B ) )
21rexbidv 2531 . 2  |-  ( y  =  C  ->  ( E. x  e.  A  y  =  B  <->  E. x  e.  A  C  =  B ) )
3 rnmpt.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
43rnmpt 4972 . 2  |-  ran  F  =  { y  |  E. x  e.  A  y  =  B }
52, 4elab2g 2950 1  |-  ( C  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509    |-> cmpt 4145   ran crn 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-mpt 4147  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by:  elrnmpt1s  4974  elrnmptdv  4978  elrnmpt2d  4979  fifo  7147  4sqleminfi  12920  conjnmzb  13817  gausslemma2dlem1a  15737
  Copyright terms: Public domain W3C validator