ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmpt2d Unicode version

Theorem elrnmpt2d 4834
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
elrnmpt2d.1  |-  F  =  ( x  e.  A  |->  B )
elrnmpt2d.2  |-  ( ph  ->  C  e.  ran  F
)
Assertion
Ref Expression
elrnmpt2d  |-  ( ph  ->  E. x  e.  A  C  =  B )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    B( x)    F( x)

Proof of Theorem elrnmpt2d
StepHypRef Expression
1 elrnmpt2d.2 . 2  |-  ( ph  ->  C  e.  ran  F
)
2 elrnmpt2d.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
32elrnmpt 4828 . . 3  |-  ( C  e.  ran  F  -> 
( C  e.  ran  F  <->  E. x  e.  A  C  =  B )
)
43ibi 175 . 2  |-  ( C  e.  ran  F  ->  E. x  e.  A  C  =  B )
51, 4syl 14 1  |-  ( ph  ->  E. x  e.  A  C  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 2125   E.wrex 2433    |-> cmpt 4021   ran crn 4580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-rex 2438  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-mpt 4023  df-cnv 4587  df-dm 4589  df-rn 4590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator