| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsng | Unicode version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| elsng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2236 |
. 2
| |
| 2 | df-sn 3672 |
. 2
| |
| 3 | 1, 2 | elab2g 2950 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sn 3672 |
| This theorem is referenced by: elsn 3682 elsni 3684 snidg 3695 eltpg 3711 eldifsn 3795 elsucg 4495 funconstss 5753 fniniseg 5755 fniniseg2 5757 tpfidceq 7092 fidcenumlemrks 7120 ltxr 9971 elfzp12 10295 1exp 10790 imasaddfnlemg 13347 0subm 13517 0subg 13736 0nsg 13751 kerf1ghm 13811 lsssn0 14334 plycj 15435 2lgslem2 15771 |
| Copyright terms: Public domain | W3C validator |