| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsng | Unicode version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| elsng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2214 |
. 2
| |
| 2 | df-sn 3649 |
. 2
| |
| 3 | 1, 2 | elab2g 2927 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-sn 3649 |
| This theorem is referenced by: elsn 3659 elsni 3661 snidg 3672 eltpg 3688 eldifsn 3771 elsucg 4469 funconstss 5721 fniniseg 5723 fniniseg2 5725 tpfidceq 7053 fidcenumlemrks 7081 ltxr 9932 elfzp12 10256 1exp 10750 imasaddfnlemg 13261 0subm 13431 0subg 13650 0nsg 13665 kerf1ghm 13725 lsssn0 14247 plycj 15348 2lgslem2 15684 |
| Copyright terms: Public domain | W3C validator |