ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsng Unicode version

Theorem elsng 3648
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
elsng  |-  ( A  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )

Proof of Theorem elsng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2212 . 2  |-  ( x  =  A  ->  (
x  =  B  <->  A  =  B ) )
2 df-sn 3639 . 2  |-  { B }  =  { x  |  x  =  B }
31, 2elab2g 2920 1  |-  ( A  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sn 3639
This theorem is referenced by:  elsn  3649  elsni  3651  snidg  3662  eltpg  3678  eldifsn  3760  elsucg  4451  funconstss  5698  fniniseg  5700  fniniseg2  5702  tpfidceq  7027  fidcenumlemrks  7055  ltxr  9897  elfzp12  10221  1exp  10713  imasaddfnlemg  13146  0subm  13316  0subg  13535  0nsg  13550  kerf1ghm  13610  lsssn0  14132  plycj  15233  2lgslem2  15569
  Copyright terms: Public domain W3C validator