ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsng Unicode version

Theorem elsng 3591
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
elsng  |-  ( A  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )

Proof of Theorem elsng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2172 . 2  |-  ( x  =  A  ->  (
x  =  B  <->  A  =  B ) )
2 df-sn 3582 . 2  |-  { B }  =  { x  |  x  =  B }
31, 2elab2g 2873 1  |-  ( A  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sn 3582
This theorem is referenced by:  elsn  3592  elsni  3594  snidg  3605  eltpg  3621  eldifsn  3703  elsucg  4382  funconstss  5603  fniniseg  5605  fniniseg2  5607  fidcenumlemrks  6918  ltxr  9711  elfzp12  10034  1exp  10484
  Copyright terms: Public domain W3C validator