| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsng | Unicode version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| elsng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2212 |
. 2
| |
| 2 | df-sn 3639 |
. 2
| |
| 3 | 1, 2 | elab2g 2920 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sn 3639 |
| This theorem is referenced by: elsn 3649 elsni 3651 snidg 3662 eltpg 3678 eldifsn 3760 elsucg 4451 funconstss 5698 fniniseg 5700 fniniseg2 5702 tpfidceq 7027 fidcenumlemrks 7055 ltxr 9897 elfzp12 10221 1exp 10713 imasaddfnlemg 13146 0subm 13316 0subg 13535 0nsg 13550 kerf1ghm 13610 lsssn0 14132 plycj 15233 2lgslem2 15569 |
| Copyright terms: Public domain | W3C validator |