| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsng | Unicode version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| elsng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 |
. 2
| |
| 2 | df-sn 3629 |
. 2
| |
| 3 | 1, 2 | elab2g 2911 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3629 |
| This theorem is referenced by: elsn 3639 elsni 3641 snidg 3652 eltpg 3668 eldifsn 3750 elsucg 4440 funconstss 5683 fniniseg 5685 fniniseg2 5687 tpfidceq 7000 fidcenumlemrks 7028 ltxr 9867 elfzp12 10191 1exp 10677 imasaddfnlemg 13016 0subm 13186 0subg 13405 0nsg 13420 kerf1ghm 13480 lsssn0 14002 plycj 15081 2lgslem2 15417 |
| Copyright terms: Public domain | W3C validator |