Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsng Unicode version

Theorem elsng 3537
 Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
elsng

Proof of Theorem elsng
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2144 . 2
2 df-sn 3528 . 2
31, 2elab2g 2826 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104   wceq 1331   wcel 1480  csn 3522 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-sn 3528 This theorem is referenced by:  elsn  3538  elsni  3540  snidg  3549  eltpg  3564  eldifsn  3645  elsucg  4321  funconstss  5531  fniniseg  5533  fniniseg2  5535  fidcenumlemrks  6834  ltxr  9555  elfzp12  9872  1exp  10315
 Copyright terms: Public domain W3C validator