ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsng Unicode version

Theorem elsng 3634
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
elsng  |-  ( A  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )

Proof of Theorem elsng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2200 . 2  |-  ( x  =  A  ->  (
x  =  B  <->  A  =  B ) )
2 df-sn 3625 . 2  |-  { B }  =  { x  |  x  =  B }
31, 2elab2g 2908 1  |-  ( A  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   {csn 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sn 3625
This theorem is referenced by:  elsn  3635  elsni  3637  snidg  3648  eltpg  3664  eldifsn  3746  elsucg  4436  funconstss  5677  fniniseg  5679  fniniseg2  5681  fidcenumlemrks  7014  ltxr  9844  elfzp12  10168  1exp  10642  imasaddfnlemg  12900  0subm  13059  0subg  13272  0nsg  13287  kerf1ghm  13347  lsssn0  13869  plycj  14939  2lgslem2  15249
  Copyright terms: Public domain W3C validator