| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elsng | Unicode version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| elsng | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeq1 2203 | 
. 2
 | |
| 2 | df-sn 3628 | 
. 2
 | |
| 3 | 1, 2 | elab2g 2911 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3628 | 
| This theorem is referenced by: elsn 3638 elsni 3640 snidg 3651 eltpg 3667 eldifsn 3749 elsucg 4439 funconstss 5680 fniniseg 5682 fniniseg2 5684 tpfidceq 6991 fidcenumlemrks 7019 ltxr 9850 elfzp12 10174 1exp 10660 imasaddfnlemg 12957 0subm 13116 0subg 13329 0nsg 13344 kerf1ghm 13404 lsssn0 13926 plycj 14997 2lgslem2 15333 | 
| Copyright terms: Public domain | W3C validator |