| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsng | Unicode version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| elsng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2212 |
. 2
| |
| 2 | df-sn 3639 |
. 2
| |
| 3 | 1, 2 | elab2g 2920 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sn 3639 |
| This theorem is referenced by: elsn 3649 elsni 3651 snidg 3662 eltpg 3678 eldifsn 3760 elsucg 4452 funconstss 5700 fniniseg 5702 fniniseg2 5704 tpfidceq 7029 fidcenumlemrks 7057 ltxr 9899 elfzp12 10223 1exp 10715 imasaddfnlemg 13179 0subm 13349 0subg 13568 0nsg 13583 kerf1ghm 13643 lsssn0 14165 plycj 15266 2lgslem2 15602 |
| Copyright terms: Public domain | W3C validator |