Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eltpg | GIF version |
Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
eltpg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 3603 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
2 | elsng 3598 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐷} ↔ 𝐴 = 𝐷)) | |
3 | 1, 2 | orbi12d 788 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}) ↔ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ∨ 𝐴 = 𝐷))) |
4 | df-tp 3591 | . . . 4 ⊢ {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷}) | |
5 | 4 | eleq2i 2237 | . . 3 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ 𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷})) |
6 | elun 3268 | . . 3 ⊢ (𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷}) ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷})) | |
7 | 5, 6 | bitri 183 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷})) |
8 | df-3or 974 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ↔ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ∨ 𝐴 = 𝐷)) | |
9 | 3, 7, 8 | 3bitr4g 222 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 703 ∨ w3o 972 = wceq 1348 ∈ wcel 2141 ∪ cun 3119 {csn 3583 {cpr 3584 {ctp 3585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-tp 3591 |
This theorem is referenced by: eldiftp 3629 eltpi 3630 eltp 3631 tpid1g 3695 tpid2g 3697 zabsle1 13694 |
Copyright terms: Public domain | W3C validator |