![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eltpg | GIF version |
Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
eltpg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 3638 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
2 | elsng 3633 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐷} ↔ 𝐴 = 𝐷)) | |
3 | 1, 2 | orbi12d 794 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}) ↔ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ∨ 𝐴 = 𝐷))) |
4 | df-tp 3626 | . . . 4 ⊢ {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷}) | |
5 | 4 | eleq2i 2260 | . . 3 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ 𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷})) |
6 | elun 3300 | . . 3 ⊢ (𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷}) ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷})) | |
7 | 5, 6 | bitri 184 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷})) |
8 | df-3or 981 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ↔ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ∨ 𝐴 = 𝐷)) | |
9 | 3, 7, 8 | 3bitr4g 223 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 ∪ cun 3151 {csn 3618 {cpr 3619 {ctp 3620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-tp 3626 |
This theorem is referenced by: eldiftp 3664 eltpi 3665 eltp 3666 tpid1g 3730 tpid2g 3732 zabsle1 15115 gausslemma2dlem0i 15173 |
Copyright terms: Public domain | W3C validator |