| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eltpg | GIF version | ||
| Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| eltpg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprg 3686 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 2 | elsng 3681 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐷} ↔ 𝐴 = 𝐷)) | |
| 3 | 1, 2 | orbi12d 798 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}) ↔ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ∨ 𝐴 = 𝐷))) |
| 4 | df-tp 3674 | . . . 4 ⊢ {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷}) | |
| 5 | 4 | eleq2i 2296 | . . 3 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ 𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷})) |
| 6 | elun 3345 | . . 3 ⊢ (𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷}) ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷})) | |
| 7 | 5, 6 | bitri 184 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷})) |
| 8 | df-3or 1003 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ↔ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ∨ 𝐴 = 𝐷)) | |
| 9 | 3, 7, 8 | 3bitr4g 223 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 713 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 ∪ cun 3195 {csn 3666 {cpr 3667 {ctp 3668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-tp 3674 |
| This theorem is referenced by: eldiftp 3712 eltpi 3713 eltp 3714 tpid1g 3779 tpid2g 3781 zabsle1 15686 gausslemma2dlem0i 15744 2lgsoddprm 15800 |
| Copyright terms: Public domain | W3C validator |