| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eltpg | GIF version | ||
| Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| eltpg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprg 3643 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 2 | elsng 3638 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐷} ↔ 𝐴 = 𝐷)) | |
| 3 | 1, 2 | orbi12d 794 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}) ↔ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ∨ 𝐴 = 𝐷))) |
| 4 | df-tp 3631 | . . . 4 ⊢ {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷}) | |
| 5 | 4 | eleq2i 2263 | . . 3 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ 𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷})) |
| 6 | elun 3305 | . . 3 ⊢ (𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷}) ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷})) | |
| 7 | 5, 6 | bitri 184 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷})) |
| 8 | df-3or 981 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ↔ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ∨ 𝐴 = 𝐷)) | |
| 9 | 3, 7, 8 | 3bitr4g 223 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 {csn 3623 {cpr 3624 {ctp 3625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-tp 3631 |
| This theorem is referenced by: eldiftp 3669 eltpi 3670 eltp 3671 tpid1g 3735 tpid2g 3737 zabsle1 15324 gausslemma2dlem0i 15382 2lgsoddprm 15438 |
| Copyright terms: Public domain | W3C validator |