ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epini Unicode version

Theorem epini 5072
Description: Any set is equal to its preimage under the converse epsilon relation. (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
epini.1  |-  A  e. 
_V
Assertion
Ref Expression
epini  |-  ( `'  _E  " { A } )  =  A

Proof of Theorem epini
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 epini.1 . . . 4  |-  A  e. 
_V
2 vex 2779 . . . . 5  |-  x  e. 
_V
32eliniseg 5071 . . . 4  |-  ( A  e.  _V  ->  (
x  e.  ( `'  _E  " { A } )  <->  x  _E  A ) )
41, 3ax-mp 5 . . 3  |-  ( x  e.  ( `'  _E  " { A } )  <-> 
x  _E  A )
51epelc 4356 . . 3  |-  ( x  _E  A  <->  x  e.  A )
64, 5bitri 184 . 2  |-  ( x  e.  ( `'  _E  " { A } )  <-> 
x  e.  A )
76eqriv 2204 1  |-  ( `'  _E  " { A } )  =  A
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776   {csn 3643   class class class wbr 4059    _E cep 4352   `'ccnv 4692   "cima 4696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-eprel 4354  df-xp 4699  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator